已知抛物线 与 轴交于 , 两点, 为抛物线的顶点,抛物线的对称轴交 轴于点 ,连结 ,且 ,如图所示.
(1)求抛物线的解析式;
(2)设 是抛物线的对称轴上的一个动点.
①过点 作 轴的平行线交线段 于点 ,过点 作 交抛物线于点 ,连结 、 ,求 的面积的最大值;
②连结 ,求 的最小值.
如图所示,在梯形ABCD中,AD∥BC,∠BDC=90°,E为DC上一点,∠BDE=∠DBC.
(1)求证:DE=CE;
(2)若,试判断四边形ABED的形状,并说明理由.
某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩计算了甲成绩的平均数和方差(见小宇的作业).
(1)求a和乙的方差S乙;
(2)请你从平均数和方差的角度分析,谁将被选中.
解方程
(1);(2)
如图,在△ABC中,AB=AC=4cm,∠BAC=90°.动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为ts,四边形APQC的面积为ycm2.
(1)当t为何值时,△PBQ是直角三角形?
(2)①求y与t的函数关系式,并写出t的取值范围;
②当t为何值时,y取得最小值?最小值为多少?
(3)设PQ的长为xcm,试求y与x的函数关系式.
商场销售某种冰箱,该种冰箱每台进价为2500元,已知原销售价为每台2900元时,平均每天能售出8台.若在原销售价的基础上每台降价50元,则平均每天可多售出4台.设每台冰箱的实际售价比原销售价降低了x元.
(1)填表(不需化简):
每天的销售量/台 |
每台销售利润/元 |
|
降价前 |
8 |
400 |
降价后 |
(2)商场为使这种冰箱平均每天的销售利润达到5000元,则每台冰箱的实际售价应定为多少元?