游客
题文

如图,在平面直角坐标系 xOy 中,已知一次函数 y = 3 2 x + b 的图象与反比例函数 y = 12 x 的图象相交于 A B 两点,且点 A 的坐标为 ( a , 6 )

(1)求该一次函数的解析式;

(2)求 ΔAOB 的面积.

科目 数学   题型 解答题   难度 中等
知识点: 反比例函数与一次函数的交点问题
登录免费查看答案和解析
相关试题

已知四个实数a,b,c,d,且a≠b,c≠d.若四个关系式:a2+ac=4,b2+bc=4,c2+ac=8,d2+ad=8同时成立,试求a,c的值.

宁海中学高一段组织了围棋比赛,共有10名选手进入了决赛,决赛阶段实行单循环赛(即每两名参赛选手都要赛一局,且每局比赛都决出胜负),若一号选手胜a1局,输b1局;二号选手胜a2局,输b2局,…,十号选手胜a10局,输b10局.试比较a12+a22+…+a102与b12+b22+…+b102的大小,并叙述理由.

阅读下面的短文,并解答下列问题:
我们把相似形的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同.就把它们叫做相似体.
如图,甲、乙是两个不同的正方体,正方体都是相似体,它们的一切对应线段之比都等于相似比:a:b,设S:S分别表示这两个正方体的表面积,则,又设V、V分别表示这两个正方体的体积,则
(1)下列几何体中,一定属于相似体的是 _________ 

A.两个球体; B.两个圆锥体; C.两个圆柱体; D.两个长方体.

(2)请归纳出相似体的3条主要性质:
①相似体的一切对应线段(或弧)长的比等于 _________ 
②相似体表面积的比等于 _________ 
③相似体体积的比等于 _________ 

如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.
(1)设菱形相邻两个内角的度数分别为m°和n°,将菱形的“接近度”定义为|m﹣n|,于是|m﹣n|越小,菱形越接近于正方形.
①若菱形的一个内角为70°,则该菱形的“接近度”等于 _________ 
②当菱形的“接近度”等于 _________ 时,菱形是正方形.
(2)设矩形相邻两条边长分别是a和b(a≤b),将矩形的“接近度”定义为|a﹣b|,于是|a﹣b|越小,矩形越接近于正方形.
你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义.

八年级数学学习合作小组在学过《图形的相似》这一章后,发现可将相似三角形的定义、判定以及性质拓展到矩形、菱形的相似中去.如:我们可以定义:“长和宽之比相等的矩形是相似矩形.”相似矩形也有以下的性质:相似矩形的对角线之比等于相似比,周长比等于相似比,面积比等于相似比的平方等等.请你参与这个学习小组,一同探索这类问题:

(1)写出判定菱形相似的一种判定方法:若有一组角对应相等(或两组对角线对应成比例),则这两个菱形相似;
(2)如图,将菱形ABCD沿着直线AC向右平移后得到菱形A′B′C′D′,试证明:四边形A′FCE是菱形,且菱形ABCD∽菱形A′FCE;
(3)若AC=,菱形A′FCE的面积是菱形ABCD面积的一半,求平移的距离AA′的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号