游客
题文

如图,正方形 ABCD 中, P 是对角线 AC 上的一个动点(不与 A C 重合),连结 BP ,将 BP 绕点 B 顺时针旋转 90 ° BQ ,连结 QP BC 于点 E QP 延长线与边 AD 交于点 F

(1)连结 CQ ,求证: AP = CQ

(2)若 AP = 1 4 AC ,求 CE : BC 的值;

(3)求证: PF = EQ

科目 数学   题型 解答题   难度 中等
知识点: 旋转的性质 几何变换综合题 全等三角形的判定与性质 正方形的性质
登录免费查看答案和解析
相关试题

尺规作图:画出线段AB的垂直平分线(不写作法,保留作图痕迹)

解方程组

在平面直角坐标系中,点O为原点,抛物线y=ax2+bx(其中-1≤a<0)经过A(3,n),AB⊥y轴于B,抛物线交直线AB于M.
(1)若n=1,AB=3BM,求抛物线所对应的函数关系式;
(2)若n=a+b,抛物线与x轴另一个异于原点的交点为C,过点A作AP∥OM交直线MC于点P,当△OPM的面积最大时,求sin∠MOP的值.

如图,四边形ABCD是⊙O的内接四边形,,点E、F分别是弦AD、DC上的点.

(1)若∠ABE=∠CBF,BE=BF.求证:BD是⊙O的直径.
(2)若,∠D=2∠EBF=90°,AE=ED=2.求DF的长.

已知点A(m,p),B(n,q)(m<n<0)在动点C(,a)(k≠0)所形成的曲线上.若p+q=-b-2,.试比较p和q的大小,并说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号