在平面直角坐标系中,抛物线 与 轴交于点 、 ,交 轴于点 ,点 为抛物线的顶点,对称轴与 轴交于点 .
(1)求抛物线的解析式;
(2)如图1,连接 ,点 是线段 上方抛物线上一动点, 于点 ,过点 作 轴于点 ,交 于点 .点 是 轴上一动点,当 取最大值时:
①求 的最小值;
②如图2, 点为 轴上一动点,请直接写出 的最小值.
先化简,再求值:,其中,x满足
且x为整数.
开发区有A,B两个仓储中心,m是仓储中心附近的一条主干道,画出连接AB的线路,再作出从AB的中点P到主干道m最近的路线. (要求:用尺规作图,并保留作图痕迹)
计算:
已知是半圆
的直径, 点
在
的延长线上运动(点
与点
不重合), 以
为直径的半圆
与半圆
交于点
的平分线与半圆
交于点
.
如图甲, 求证: 是半圆
的切线;
如图乙, 作于点
, 猜想
与已有的哪条线段的一半相等, 并加以证明;
如图丙, 在上述条件下, 过点作
的平行线交
于点
, 当
与半圆
相切时, 求
甲乙的正切值.
如图,已知二次函数的图象与
轴交于A、B两点,与
轴交于点P,顶点为C(1,-2).
(1)求此函数的关系式;
(2)作点C关于轴的对称点D,顺次连接A、C、B、D.若在抛物线上存在点E,使直线PE将四边形ABCD分成面积相等的两个四边形,求点E的坐标;
(3)在(2)的条件下,抛物线上是否存在一点F,使得△PEF是以P为直角顶点的直角三角形?若存在,求出点F的坐标及△PEF的面积;若不存在,请说明理由.