已知抛物线 y = a ( x - 1 ) 2 过点 ( 3 , 1 ) , D 为抛物线的顶点.
(1)求抛物线的解析式;
(2)若点 B 、 C 均在抛物线上,其中点 B ( 0 , 1 4 ) ,且 ∠ BDC = 90 ° ,求点 C 的坐标;
(3)如图,直线 y = kx + 4 - k 与抛物线交于 P 、 Q 两点.
①求证: ∠ PDQ = 90 ° ;
②求 ΔPDQ 面积的最小值.
计算: 5 0 - ( - 2 ) + 8 × 2 .
计算: | - 2 | × cos 60 ° - ( 1 3 ) - 1 .
解方程: x 2 - 2 x = 4 .
计算: ( - 2016 ) 0 + - 8 3 + tan 45 ° .
已知 5 x 2 - x - 1 = 0 ,求代数式 ( 3 x + 2 ) ( 3 x - 2 ) + x ( x - 2 ) 的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号