游客
题文

如图,已知 AB 是圆 O 的直径,弦 CD AB ,垂足为 H ,与 AC 平行的圆 O 的一条切线交 CD 的延长线于点 M ,交 AB 的延长线于点 E ,切点为 F ,连接 AF CD 于点 N

(1)求证: CA = CN

(2)连接 DF ,若 cos DFA = 4 5 AN = 2 10 ,求圆 O 的直径的长度.

科目 数学   题型 解答题   难度 中等
知识点: 圆周角定理 解直角三角形 切线的性质
登录免费查看答案和解析
相关试题

计算: -(-1)+ 3 2 ÷(1-4)×2

在平面直角坐标系 xOy 中,抛物线与 x 轴交于 (p,0) (q,0) ,则该抛物线的解析式可以表示为:

y=a(x-p)(x-q)=a x 2 -a(p+q)x+apq

(1)若 a=1 ,抛物线与 x 轴交于 (1,0) (5,0) ,直接写出该抛物线的解析式和顶点坐标;

(2)若 a=-1 ,如图(1), A(-1,0) B(3,0) ,点 M(m,0) 在线段 AB 上,抛物线 C 1 x 轴交于 A M ,顶点为 C ;抛物线 C 2 x 轴交于 B M ,顶点为 D .当 A C D 三点在同一条直线上时,求 m 的值;

(3)已知抛物线 C 3 x 轴交于 A(-1,0) B(3,0) ,线段 EF 的端点 E(0,3) F(4,3) .若抛物线 C 3 与线段 EF 有公共点,结合图象,在图(2)中探究 a 的取值范围.

如图, AB O 的直径, AB=6 OCAB OC=5 BC O 交于点 D ,点 E BD ̂ 的中点, EF//BC ,交 OC 的延长线于点 F

(1)求证: EF O 的切线;

(2) CG//OD ,交 AB 于点 G ,求 CG 的长.

某水果市场销售一种香蕉.甲店的香蕉价格为4元 /kg ;乙店的香蕉价格为5元 /kg ,若一次购买 6kg 以上,超过 6kg 部分的价格打7折.

(1)设购买香蕉 xkg ,付款金额 y 元,分别就两店的付款金额写出 y 关于 x 的函数解析式;

(2)到哪家店购买香蕉更省钱?请说明理由.

某校举行了主题为“防溺水,保安全”的知识竞赛活动.赛后随机抽取了50名参赛学生的成绩进行相关统计,整理得尚未完整的频数分布表和扇形统计图.现累计了40名参赛学生的成绩,余下10名参赛学生的成绩尚未累计,这10名学生成绩如下(单位:分) :75 ,63,76,87,69,78,82,75,63,71.

频数分布表

组别

分数段

划记

频数

A

60<x70

  

  

B

70<x80

正正  

  

C

80<x90

正正正正  

  

D

90<x100

  

  

(1)在频数分布表中补全各组划记和频数;

(2)求扇形统计图中 B 组所对应的圆心角的度数;

(3)该校有2000名学生参加此次知识竞赛,估计成绩在 80<x100 的学生有多少人?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号