游客
题文

如图,抛物线 y = a x 2 + bx + c ( a 0 ) ,经过点 A ( 1 , 0 ) B ( 3 , 0 ) C ( 0 , 3 ) 三点.

(1)求抛物线的解析式及顶点 M 的坐标;

(2)连接 AC BC N 为抛物线上的点且在第四象限,当 S ΔNBC = S ΔABC 时,求 N 点的坐标;

(3)在(2)问的条件下,过点 C 作直线 l / / x 轴,动点 P ( m , 3 ) 在直线 l 上,动点 Q ( m , 0 ) x 轴上,连接 PM PQ NQ ,当 m 为何值时, PM + PQ + QN 最小,并求出 PM + PQ + QN 的最小值.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 待定系数法求二次函数解析式 轴对称-最短路线问题 二次函数综合题
登录免费查看答案和解析
相关试题

(1)如图1,在ABCD中,点E,F分别在AB,CD上,AE=CF.求证:DE=BF.
(2)如图2,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC的度数.

(1)解不等式3x-2≥4,并将解集在数轴上表示出来.

(2)化简:

在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠
在两坐标轴上,点C为 (-1,0).如图所示,B点在抛物线y=x2x-2图象上,过点B作
BD⊥x轴,垂足为D,且B点横坐标为-3.
(1)求证:△BDC≌△COA;
(2)求BC所在直线的函数关系式;
(3)抛物线的对称轴上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出所
有点P的坐标;若不存在,请说明理由.

如图,在平面直角坐标xOy中,一次函数的图象与反比例函数(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点B的坐标为(6,).线段OA=5,E为x轴上一点,且sin∠AOE=
(1)求该反比例函数和一次函数的解析式;
(2)求△AOC的面积.

已知:如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2
(1)求证:AB=BC;
(2)当BE⊥AD于E时,试证明:BE=AE+CD.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号