游客
题文

四川省安岳县盛产柠檬和柚子两种水果,今年,某公司计划用两种型号的汽车运输柠檬和柚子到外地销售,运输中要求每辆汽车都要满载满运,且只能装运一种水果.若用3辆汽车装载柠檬、2辆汽车装载柚子可共装载33吨,若用2辆汽车装载柠檬、3辆汽车装载柚子可共装载32吨.

(1)求每辆汽车可装载柠檬或柚子各多少吨?

(2)据调查,全部销售完后,每吨柠檬可获利700元、每吨柚子可获利500元,计划用20辆汽车运输,且柚子不少于30吨,如何安排运输才能使公司获利最大,最大利润是多少元?

科目 数学   题型 解答题   难度 中等
知识点: 二元一次方程组的应用 一次函数的应用
登录免费查看答案和解析
相关试题

受全球金融危机的影响,出现了大学毕业生就业难的问题,政府为了积极采取措施,需要掌握求职者求职情况.现对求职者进行抽样调查,若求职者每人都投出50张求职申请,根据“得到用人单位面视通知的次数”作统计,如下图.

(1)样本中的众数是.
(2)如果a:b:c:d:e=2:3:5:8:12,样本容量是900,求中位数和没得到用人单位面视通知的人数.
(3)任意采访一个大学毕业生的求职者,求出他“至少得到一次用人单位面视通知”的概率.

如图,方格纸中有三个点,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.

(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形;
(2)在图乙中作出的四边形是轴对称图形但不是中心对称图形;
(3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.
(注:图甲、图乙、图丙在答题纸上)

如图,在Rt△ABC中,∠C=90°,O是斜边AB上的中点,AE=CE,BF∥AC.

(1)求证:△AOE≌△BOF;
(2)求证:四边形BCEF是矩形.

如图,抛物线与x轴相交于BC两点,与y轴相交于点AP(2a,-4a2+7a+2)(a是实数)在抛物线上,直线y=k x +b经过AB两点.

(1)求直线AB的解析式;
(2)平行于y轴的直线x=2交直线AB于点D,交抛物线于点E
①直线x=t(0≤t≤4)与直线AB相交F,与抛物线相交于点G.若FGDE=3∶4,求t的值;
②将抛物线向上平移m(m>0)个单位,当EO平分∠AED时,求m的值.

如图,矩形ABCD中,AB="10" cm,BC="6" cm.现有两个动点PQ分别从AB同时出发,点P在线段AB上沿AB方向作匀速运动,点Q在线段BC上沿BC方向作匀速运动,已知点P的运动速度为1 cm/s,运动时间为t s.

(1)设点Q的运动速度为cm/s.
①当△DPQ的面积最小时,求t的值;
②当△DAP∽△QBP相似时,求t的值.
(2)设点Q的运动速度为a cm/s,问是否存在a的值,使得△DAP与△PBQ和△QCD这两个三角形都相似?若存在,请求出a的值;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号