游客
题文

如图1,在平面直角坐标系, O 为坐标原点,点 A ( 1 , 0 ) ,点 B ( 0 , 3 )

(1)求 BAO 的度数;

(2)如图1,将 ΔAOB 绕点 O 顺时针旋转得△ A ' OB ' ,当 A ' 恰好落在 AB 边上时,设△ AB ' O 的面积为 S 1 ,△ BA ' O 的面积为 S 2 S 1 S 2 有何关系?为什么?

(3)若将 ΔAOB 绕点 O 顺时针旋转到如图2所示的位置, S 1 S 2 的关系发生变化了吗?证明你的判断.

科目 数学   题型 解答题   难度 中等
知识点: 解直角三角形 几何变换综合题 全等三角形的判定与性质 等边三角形的判定与性质 含30度角的直角三角形
登录免费查看答案和解析
相关试题

解不等式:,并求其自然数解.

计算:(1);(2)

已知:一次函数的图象与x轴、y轴的交点分别为A、B,以B为旋转中心,将△BOA逆时针旋转,得△BCD(其中O与C、A与D是对应的顶点).

(1)求AB的长;
(2)当∠BAD=45°时,求D点的坐标;
(3)当点C在线段AB上时,求直线BD的关系式.

已知:在△ABC中,AB=6,BC=8,AC=10,O为AB边上的一点,以O为圆心,OA长为半径作圆交AC于D点,过D作⊙O的切线交BC于E.

(1)若O为AB的中点(如图1),则ED与EC的大小关系为:ED EC(填“”“”或“”)
(2)若OA<3时(如图2),(1)中的关系是否还成立?为什么?
(3)当⊙O过BC中点时(如图3),求CE长.

如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2)在二次函数y=ax2+(a+5)x的图象上.

(1)求该二次函数的关系式;
(2)点C是否在此二次函数的图象上,说明理由;
(3)若点P为直线OC上一个动点,过点P作y轴的平行线交抛物线于点M,问是否存在这样的点P,使得四边形ABMP为平行四边形?若存在,求出此时点P的坐标;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号