如图1,若四边形ABCD、四边形CFED都是正方形,显然图中有AG=CE,AG⊥CE.当正方形GFED绕D旋转到如图2的位置时,AG=CE, AG⊥CH是否成立?若成立,请给出证明;若不成立,请说明理由.
当正方形GFED绕D旋转到如图3的位置时,延长CE交AG于H,交AD于M.当AD=4,DG=
时,求CH的长。
在围棋盒中有x颗黑色棋子和y颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是,
(1)试写出y与x的函数关系式;(2)若往盒中再放进10颗黑色棋子,取得黑色棋子的概率为,求x和y的值.
化简求值:.
在平面直角坐标系中,二次函数的图象与
轴交于A(-3,0),B(1,0)两点,与y轴交于点C.
(1)求这个二次函数的解析式;
(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;
(3)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由;
如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.
(1)求证:KE=GE;
(2)若AC∥EF,试判断线段KG、KD、GE间的相等
数量关系,并说明理由;
(3)在(2)的条件下,若sinE=,AK=
,求FG的长.
某仓库有甲种货物360吨,乙种货物290吨,计划用A、B两种共50辆货车运往外地.已知一辆A种货车的运费需0.5万元,一辆B种货车的运费需0.8万元.
(1)设A种货车为辆,运输这批货物的总运费为y万元,试写出y与
的关系表达式;
(2)若一辆A种货车能装载甲种货物9吨和乙种货物3吨;一辆B种货车能装载甲种货物6吨和乙种货物8吨.按此要求安排A,B两种货车运送这批货物,有哪几种运输方案?请设计出来;
(3)试说明哪种方案总运费最少?最少运费是多少万元?