游客
题文

如图,已知 AOB = 60 ° ,在 AOB 的平分线 OM 上有一点 C ,将一个 120 ° 角的顶点与点 C 重合,它的两条边分别与直线 OA OB 相交于点 D E

(1)当 DCE 绕点 C 旋转到 CD OA 垂直时(如图 1 ) ,请猜想 OE + OD OC 的数量关系,并说明理由;

(2)当 DCE 绕点 C 旋转到 CD OA 不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;

(3)当 DCE 绕点 C 旋转到 CD OA 的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段 OD OE OC 之间又有怎样的数量关系?请写出你的猜想,不需证明.

科目 数学   题型 解答题   难度 中等
知识点: 旋转的性质 几何变换综合题 全等三角形的判定与性质 角平分线的性质
登录免费查看答案和解析
相关试题

(内江)如图,在△ACE中,CA=CE,∠CAE=30°,⊙O经过点C,且圆的直径AB在线段AE上.
(1)试说明CE是⊙O的切线;
(2)若△ACE中AE边上的高为h,试用含h的代数式表示⊙O的直径AB;
(3)设点D是线段AC上任意一点(不含端点),连接OD,当CD+OD的最小值为6时,求⊙O的直径AB的长.

(内江)如图,抛物线与x轴交于点A(,0)、点B(2,0),与y轴交于点C(0,1),连接BC.
(1)求抛物线的函数关系式;
(2)点N为抛物线上的一个动点,过点N作NP⊥x轴于点P,设点N的横坐标为t(),求△ABN的面积S与t的函数关系式;
(3)若时△OPN∽△COB,求点N的坐标.

(达州)学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑比购买3台学习机多600元,购买2台平板电脑和3台学习机共需8400元.
(1)求购买1台平板电脑和1台学习机各需多少元?
(2)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168000元,且购买学习机的台数不超过购买平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?

(达州)如图,在平面直角坐标系中,四边形ABCD是菱形,B.O在x轴负半轴上,AO=,tan∠AOB=,一次函数的图象过A、B两点,反比例函数的图象过OA的中点D.
(1)求一次函数和反比例函数的表达式;
(2)平移一次函数的图象,当一次函数的图象与反比例函数的图象无交点时,求b的取值范围.

(达州)阅读与应用:阅读1:a、b为实数,且a>0,b>0,因为,所以从而(当a=b时取等号).
阅读2:若函数;(m>0,x>0,m为常数),由阅读1结论可知:,所以当,即时,函数的最小值为
阅读理解上述内容,解答下列问题:
问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为2(),求当x= 时,周长的最小值为
问题2:已知函数)与函数),
当x= 时,的最小值为
问题3:某民办学校每天的支出总费用包含以下三个部分:一是教职工工资4900元;二是学生生活费成本每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.01.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号