游客
题文

我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”

(1)概念理解:

请你根据上述定义举一个等邻角四边形的例子;

(2)问题探究:

如图1,在等邻角四边形 ABCD 中, DAB = ABC AD BC 的中垂线恰好交于 AB 边上一点 P ,连接 AC BD ,试探究 AC BD 的数量关系,并说明理由;

(3)应用拓展:

如图2,在 Rt Δ ABC Rt Δ ABD 中, C = D = 90 ° BC = BD = 3 AB = 5 ,将 Rt Δ ABD 绕着点 A 顺时针旋转角 α ( 0 ° < α < BAC ) 得到 Rt AB ' D ' (如图 3 ) ,当凸四边形 AD ' BC 为等邻角四边形时,求出它的面积.

科目 数学   题型 解答题   难度 中等
知识点: 相似三角形的判定与性质 全等三角形的判定与性质 矩形的判定与性质 等腰三角形的性质
登录免费查看答案和解析
相关试题

已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.

①求证:AD=CN;
②若∠BAN=90度,求证:四边形ADCN是矩形.

当x满足不等式时,求方程的解。

如图,已知线段AB.

(1)用尺规作图的方法作出线段AB的垂直平分线CD(保留作图痕迹,不要求写出作法);
(2)在(1)中所作的直线CD上任意取两点M,N(线段AB的上方).连结AM,AN,BM,BN.求证:∠MAN=∠MBN.

如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),直线l是抛物线的对称轴.

(1)求该抛物线的解析式.
(2)若过点A(﹣1,0)的直线AB与抛物线的对称轴和x轴围成的三角形面积为6,求此直线的解析式.
(3)点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,求点P的坐标.

如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.

(1)证明:AF平分∠BAC;
(2)证明:BF=FD;
(3)若EF=4,DE=3,求AD的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号