游客
题文

对于任意实数 a b ,定义关于“ ”的一种运算如下: a b = 2 a b .例如: 5 2 = 2 × 5 2 = 8 ( 3 ) 4 = 2 × ( 3 ) 4 = 10

(1)若 3 x = 2011 ,求 x 的值;

(2)若 x 3 < 5 ,求 x 的取值范围.

科目 数学   题型 解答题   难度 中等
知识点: 解一元一次方程 解一元一次不等式
登录免费查看答案和解析
相关试题

李老师为了解班里学生的作息时间,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:

(1)此次调查的总体是什么?
(2)补全频数分布直方图;
(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?

解分式方程:

已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=-1,与x轴交于A,B两点,与y轴交于点C,其中A(-3,0),C(0,-2).

(1)求这条抛物线的函数表达式;
(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标;
(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE∥PC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.

如图,在Rt△ABC中,∠B=90°3,∠,C=30°BC="5" .点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.

(1)求证:AE=DF;
(2)△DEF能够成为等边三角形吗?如果能,求出相应的t值;如果不能,说明现由.
(3)当t为何值时,△DEF为直角三角形?请说明理由.

直线y=x+b与x轴交于点C(4,0),与y轴交于点B,并与双曲线y=(x<0)交于点A(-1,n).

(1)求直线与双曲线的解析式.
(2)连接OA,求∠OAB的正弦值.
(3)若点D在x轴的正半轴上,是否存在以点D、C、B构成的三角形与△OAB相似?若存在求出D点的坐标,若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号