如图1,将 纸片沿中位线 折叠,使点 对称点 落在 边上,再将纸片分别沿等腰 和等腰 的底边上的高线 , 折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.
(1)将 纸片按图2的方式折叠成一个叠合矩形 ,则操作形成的折痕分别是线段 , ; .
(2) 纸片还可以按图3的方式折叠成一个叠合矩形 ,若 , ,求 的长;
(3)如图4,四边形 纸片满足 , , , , ,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出 、 的长.
以直线为对称轴的抛物线过点(3,0),(0,3),求此抛物线的解析式.(3分)
(1)如图,在△ABC中,点D,E,Q分别在AB,AC,BC上,且DE∥BC,AQ交DE于点P.
求证:.
(2)如图,在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点.
①如图,若AB=AC=1,直接写出MN的长;
②如图,求证MN 2=DM·EN.
已知:正方形中,
,
绕点
顺时针旋转,它的两边分别交
(或它们的延长线)于点
.当
绕点
旋转到
时(如图1),易证
.
(1)当绕点
旋转到
时(如图2),线段
和
之间有怎样的数量关系?写出猜想,并加以证明.
(2)当绕点
旋转到如图3的位置时,线段
和
之间又有怎样的数量关系?请直接写出你的猜想.
如图,抛物线y=-x2+bx+c与x轴、y轴分别交于A(-1,0)、B(0,3)两点,顶点为D.
(1)求该抛物线的解析式;
(2)若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积(3分)
(3)AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.
已知:抛物线(
为常数,且
).
(1)求证:抛物线与轴有两个交点;
(2)设抛物线与轴的两个交点分别为
、
(
在
左侧),与
轴的交点为
.
当时,求抛物线的解析式;