游客
题文

如图1,在 ΔABC 中, A = 30 ° ,点 P 从点 A 出发以 2 cm / s 的速度沿折线 A C B 运动,点 Q 从点 A 出发以 a ( cm / s ) 的速度沿 AB 运动, P Q 两点同时出发,当某一点运动到点 B 时,两点同时停止运动.设运动时间为 x ( s ) ΔAPQ 的面积为 y ( c m 2 ) y 关于 x 的函数图象由 C 1 C 2 两段组成,如图2所示.

(1)求 a 的值;

(2)求图2中图象 C 2 段的函数表达式;

(3)当点 P 运动到线段 BC 上某一段时 ΔAPQ 的面积,大于当点 P 在线段 AC 上任意一点时 ΔAPQ 的面积,求 x 的取值范围.

科目 数学   题型 解答题   难度 中等
知识点: 二次函数的应用
登录免费查看答案和解析
相关试题

(本题2+3+3+4分)如图1,点A是反比例函数(x>0)图象上的任意一点,过点A作AB∥x轴,交另一个反比例函数(k<0,x<0)的图象于点B.

(1)若S△AOB=3,则k=______;
(2)当k=-8时:
①若点A的横坐标是1,求∠AOB的度数;
②将①中的∠AOB绕着点O旋转一定的角度,使∠AOB的两边分别交反比例函数y1、y2的图象于点M、N,如图2所示.在旋转的过程中,∠OMN的度数是否变化?并说明理由;
(3)如图1,若不论点A在何处,反比例函数(k<0,x<0)图象上总存在一点D,使得四边形AOBD为平行四边形,求k的值.

(本题4+6分)某校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.
(1)求A、B两种奖品单价各是多少元?
(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍.设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式,求出自变量m的取值范围,并确定最少费用W的值.

(本题3+3+4分)如图,四边形ABCD是⊙O的内接四边形,AC为直径,,DE⊥BC,垂足为E.

(1)求证:CD平分∠ACE;
(2)判断直线ED与⊙O的位置关系,并说明理由;
(3)若CE=1,AC=4,求阴影部分的面积.

(本题10分)如图,“和谐号”高铁列车的小桌板收起时近似看作与地面垂直,小桌板的支
架底端与桌面顶端的距离OA=75厘米.展开小桌板使桌面保持水平,此时CB⊥AO,∠AOB=∠ACB=37°,且支架长OB与桌面宽BC的长度之和等于OA的长度.求小桌板桌面的宽度BC.(参考数据sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)

(本题5+5分)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=AC,连接CE、OE,连接AE交OD于点F.

(1)求证:OE=CD;
(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号