我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”意思是:今有一圆柱形木材,埋在墙壁中,不知其大小.用锯去锯这木材,锯口深 ED = 1 寸,锯道长 AB = 1 尺 ( 1 尺 = 10 寸).问这根圆形木材的直径是 寸.
如图,⊙O的半径为2,点O到直线l的距离为3,点P为直线l上的一个动点,PB切⊙O于点B,则PB的最小值是.
如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB、AC于E、F,连接EF,则线段EF长度的最小值为.
如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为.
如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=l,则弦AB的长是.
在Rt△ABC中,∠C=900,AB=10,cosB=,则AC的长为.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号