在 中, , 交 的延长线于点 .
特例感知:
(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为 ,一条直角边与 重合,另一条直角边恰好经过点 .通过观察、测量 与 的长度,得到 .请给予证明.
猜想论证:
(2)当三角尺沿 方向移动到图2所示的位置时,一条直角边仍与 边重合,另一条直角边交 于点 ,过点 作 垂足为 .此时请你通过观察、测量 、 与 的长度,猜想并写出 、 与 之间存在的数量关系,并证明你的猜想.
联系拓展:
(3)当三角尺在图2的基础上沿 方向继续移动到图3所示的位置(点 在线段 上,且点 与点 不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)
2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.
某校有学生3000人,现欲开展学校社团活动,准备组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在学校随机抽取了50名学生做问卷调查,得到了如图所示的两个不完全统计图.
结合以上信息,回答下列问题:
(1)本次抽样调查的样本容量是 ;
(2)请你补全条形统计图,并在图上标明具体数据;
(3)求参与科技制作社团所在扇形的圆心角度数;
(4)请你估计全校有多少学生报名参加篮球社团活动.
如图,在等腰 中, , 是 的角平分线,且 ,以点 为圆心, 长为半径画弧 ,交 于点 ,交 于点 .
(1)求由弧 及线段 、 、 围成图形(图中阴影部分)的面积;
(2)将阴影部分剪掉,余下扇形 ,将扇形 围成一个圆锥的侧面, 与 正好重合,圆锥侧面无重叠,求这个圆锥的高 .
先化简,再求值: ,其中 .
计算: