某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:
抽取的学生最喜爱体育锻炼项目的统计表
类别 |
项目 |
人数(人 |
|
跳绳 |
59 |
|
健身操 |
▲ |
|
俯卧撑 |
31 |
|
开合跳 |
▲ |
|
其它 |
22 |
(1)求参与问卷调查的学生总人数.
(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?
(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.
如图所示,某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为40m的栅栏围成,若花园的BC边长为x米,花园的面积为y(m2)
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)满足条件的花园面积能达到200m2吗?若能,求出此时x的值;若不能,说明理由;
(3)请结合题意,判断当x取何值时,花园的面积最大?
如图,AB是⊙O的弦,从⊙O上一点C作CD⊥AB于D,作∠OCD的平分线交⊙O于P,M为过P的切线PM上的点,过M作MF⊥OC于F,交PC于E
(1)求证:
(2)请探究ME与MP间的数量关系,并说明理由.
已知:关于的二次函数y=px2-(3p+2)x+2p+2(p>0)
(1)求证:无论p为何值时,此函数图象与x轴总有两个交点;
(2)设这两个交点坐标分别为(x1,0),(x2,0)(其中x1<x2)且S=x2-2x1,求S关于P的函数解析式
甲口袋中装有两个相同的小球,它们分别写有1和2;乙口袋中装有三个相同的小球,它们分别写有3.4和5;丙口袋中装有两个相同的小球,它们分别写有6和7.从这3个口袋中各随机地取出1个小球.请你用画树状图的方法求:
(1)取出的3个小球上恰好有两个偶数的概率是多少?
(2)取出的3个小球上全是奇数的概率是多少?
已知抛物线y=ax2+bx+c经过(-1,0),(0,-3),(2,-3)三点,求这条抛物线的解析式,并指出对称轴和顶点坐标.