游客
题文

某水果商店销售一种进价为40元 / 千克的优质水果,若售价为50元 / 千克,则一个月可售出500千克;若售价在50元 / 千克的基础上每涨价1元,则月销售量就减少10千克.

(1)当售价为55元 / 千克时,每月销售水果多少千克?

(2)当月利润为8750元时,每千克水果售价为多少元?

(3)当每千克水果售价为多少元时,获得的月利润最大?

科目 数学   题型 解答题   难度 中等
知识点: 一元二次方程的应用 二次函数的应用
登录免费查看答案和解析
相关试题

如图1,矩形的顶点为原点,点上,把沿折叠,使点落在边上的点处,点坐标分别为,抛物线过点.

两点的坐标及该抛物线的解析式;
如图2,长、宽一定的矩形的宽,点沿(1)中的抛物线滑动,在滑动过程中轴,且的下方,当点横坐标为-1时,点距离个单位,当矩形在滑动过程中被轴分成上下两部分的面积比为2:3时,求点的坐标;
如图3,动点同时从点出发,点以每秒3个单位长度的速度沿折线的路线运动,点以每秒8个单位长度的速度沿折线的路线运动,当两点相遇时,它们都停止运动.设同时从点出发秒时,的面积为.①求出的函数关系式,并写出的取值范围:②设是①中函数的最大值,那么=.

如图,直线分别交轴、轴于B、A两点,抛物线L:的顶点G在轴上,且过(0,4)和(4,4)两点.

求抛物线L的解析式;
抛物线L上是否存在这样的点C,使得四边形ABGC是以BG为底边的梯形,若存在,请求出C点的坐标,若不存在,请说明理由.
将抛物线L沿轴平行移动得抛物线L,其顶点为P,同时将△PAB沿直线AB翻折得到△DAB,使点D落在抛物线L上. 试问这样的抛物线L是否存在,若存在,求出L对应的函数关系式,若不存在,说明理由.

已知,抛物线与x轴交于两点,与y轴交于

求这条抛物线的解析式和抛物线顶点M的坐标
求四边形ABMC的面积;
在对称轴的右侧的抛物线上是否存在点P,使为直角三角形?若存在,求出所有符合条件的点P的坐标,若不存在,请说明理由

如图,已知抛物线轴交于点,与轴交与A、B两点(点A在点B的左侧),且OA=1,OC=2

求抛物线的解析式及对称轴
点E是抛物线在第一象限内的一点,且,求点E的坐标;
在抛物线的对称轴上,是否存在点P,使得为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由。

已知:如图①,在中,,点出发沿方向向点匀速运动,速度为1cm/s;点出发沿方向向点匀速运动,速度为2cm/s;连接.若设运动的时间为),解答下列问题

为何值时,
的面积为),求之间的函数关系式;
是否存在某一时刻,使线段恰好把的周长和面积同时平分?若存在,求出此时的值;若不存在,说明理由;
如图②,连接,并把沿翻折,得到四边形,那么是否存在某一时刻,使四边形为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号