如图,抛物线的顶点为 ,与 轴交于点 ,点 为其对称轴上的一个定点.
(1)求这条抛物线的函数解析式;
(2)已知直线 是过点 且垂直于 轴的定直线,若抛物线上的任意一点 到直线 的距离为 ,求证: ;
(3)已知坐标平面内的点 ,请在抛物线上找一点 ,使 的周长最小,并求此时 周长的最小值及点 的坐标.
如图,在平面直角坐标系中,直线 与抛物线 交于 和 两点,抛物线与 轴交于点 .
(1)求一次函数和二次函数的解析式;
(2)求 的面积.
如图,抛物线 的对称轴为直线 ,抛物线与 轴交于点 和点 ,与 轴交于点 ,且点 的坐标为 .
(1)求抛物线的函数表达式;
(2)将抛物线 图象 轴下方部分沿 轴向上翻折,保留抛物线在 轴上的点和 轴上方图象,得到的新图象与直线 恒有四个交点,从左到右四个交点依次记为 , , , .当以 为直径的圆过点 时,求 的值;
(3)在抛物线 上,当 时, 的取值范围是 ,请直接写出 的取值范围.
如图, 是 的外接圆, 是直径, 是 中点,直线 与 相交于 , 两点, 是 外一点, 在直线 上,连接 , , ,且满足 .
(1)求证: 是 的切线;
(2)证明: ;
(3)若 , ,求 的长.
如图,在 中, . , ,若动点 从 出发,沿线段 运动到点 为止(不考虑 与 , 重合的情况),运动速度为 ,过点 作 交 于点 ,连接 ,设动点 运动的时间为 , 的长为 .
(1)求 关于 的函数表达式,并写出自变量 的取值范围;
(2)当 为何值时, 的面积 有最大值?最大值为多少?
如图,在矩形 中, , . 、 在对角线 上,且 , 、 分别是 、 的中点.
(1)求证: ;
(2)点 是对角线 上的点, ,求 的长.