游客
题文

如图,抛物线的顶点为 A ( h , - 1 ) ,与 y 轴交于点 B ( 0 , - 1 2 ) ,点 F ( 2 , 1 ) 为其对称轴上的一个定点.

(1)求这条抛物线的函数解析式;

(2)已知直线 l 是过点 C ( 0 , - 3 ) 且垂直于 y 轴的定直线,若抛物线上的任意一点 P ( m , n ) 到直线 l 的距离为 d ,求证: PF = d

(3)已知坐标平面内的点 D ( 4 , 3 ) ,请在抛物线上找一点 Q ,使 ΔDFQ 的周长最小,并求此时 ΔDFQ 周长的最小值及点 Q 的坐标.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 垂线段最短 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

如图,在平面直角坐标系中,的外接圆与轴交于点的长.

(1)如图1,请你类比直线和一个圆的三种位置关系,在图1的①、②、③中,分别各画出一条直线,使它与两个圆都相离、与两个圆都相切、与一个圆相离且与另一个圆相交,并在图1的④中也画上一条直线,使它与两个圆具有不同于前面3种情况的位置关系;

(2)如图2,点在直线MN上,AB=11厘米,的半径均为1厘米.以每秒2厘米的速度自左向右运动,与此同时,的半径也不断增大,其半径(厘米)与时间t(秒)之间的关系式为 .请直接写出点出发后多少秒两圆内切?

如图,中,两点在轴的上方,点的坐标是(-1,0).以点为位似中心,在轴的下方作的位似图形,并把的边长放大到原来的2倍.设点的对应点的横坐标是2,求点的横坐标

心理学家经过调查发现,某班级的学生对概念的接受能力与提出概念所用的时间(单位:分)之间满足函数关系:.其中,值越大,表示接受能力越强.
(1)第10分钟时,学生的接受能力是多少?
(2)第几分时,学生的接受能力最强?
(3)在什么范围内,学生的接受能力逐步增强?

如图,是⊙O的直径,是弦,,延长到点,使得

(1)求证:是⊙O的切线;
(2)若,求的长

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号