如图,抛物线 y = x 2 + bx + c 的对称轴为直线 x = 2 ,抛物线与 x 轴交于点 A 和点 B ,与 y 轴交于点 C ,且点 A 的坐标为 ( − 1 , 0 ) .
(1)求抛物线的函数表达式;
(2)将抛物线 y = x 2 + bx + c 图象 x 轴下方部分沿 x 轴向上翻折,保留抛物线在 x 轴上的点和 x 轴上方图象,得到的新图象与直线 y = t 恒有四个交点,从左到右四个交点依次记为 D , E , F , G .当以 EF 为直径的圆过点 Q ( 2 , 1 ) 时,求 t 的值;
(3)在抛物线 y = x 2 + bx + c 上,当 m ⩽ x ⩽ n 时, y 的取值范围是 m ⩽ y ⩽ 7 ,请直接写出 x 的取值范围.
七年级学生小丽做作业时解方程:的步骤如下: ①去分母,得3(x+1)-2(2-3x)=1 ②去括号,得3x+3-4-6x=1 ③移项,得3x-6x=1-3+4 ④合并同类项得-3x=2 ⑤系数化为1,得x=- ⑴聪明的你知道小丽的解答过程正确吗?答:(填“是”或“否”),如果不正确,第步(填序号)出现了问题; ⑵请你对小玲同学在解方程时应该注意什么提两点建议好吗? ①:; ②:. ⑶请你写出这题正确的解答过程:
解方程:.
解方程:4(1-x)=x-1
解方程:7-2x=3-4x
先化简,再求值:,其中.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号