游客
题文

黔东南州某销售公司准备购进 A B 两种商品,已知购进3件 A 商品和2件 B 商品,需要1100元;购进5件 A 商品和3件 B 商品,需要1750元.

(1)求 A B 两种商品的进货单价分别是多少元?

(2)若该公司购进 A 商品200件, B 商品300件,准备把这些商品全部运往甲、乙两地销售.已知每件 A 商品运往甲、乙两地的运费分别为20元和25元;每件 B 商品运往甲、乙两地的运费分别为15元和24元.若运往甲地的商品共240件,运往乙地的商品共260件.

①设运往甲地的 A 商品为 x (件 ) ,投资总运费为 y (元 ) ,请写出 y x 的函数关系式;

②怎样调运 A B 两种商品可使投资总费用最少?最少费用是多少元?(投资总费用 = 购进商品的费用 + 运费)

科目 数学   题型 解答题   难度 未知
知识点: 二元一次方程组的应用 一次函数的应用
登录免费查看答案和解析
相关试题

如图,在平面直角坐标系中,已知抛物线 yax 2+ bx+2( a≠0)与 x轴交于 A(﹣1,0), B(3,0)两点,与 y轴交于点 C,连接 BC

(1)求该抛物线的解析式,并写出它的对称轴;

(2)点 D为抛物线对称轴上一点,连接 CDBD,若∠ DCB=∠ CBD,求点 D的坐标;

(3)已知 F(1,1),若 Exy)是抛物线上一个动点(其中1< x<2),连接 CECFEF,求△ CEF面积的最大值及此时点 E的坐标.

(4)若点 N为抛物线对称轴上一点,抛物线上是否存在点 M,使得以 BCMN为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点 M的坐标;若不存在,请说明理由.

如图,在正方形 ABCD中, AB=6, M是对角线 BD上的一个动点(0< DM 1 2 BD),连接 AM,过点 MMNAMBC于点 N

(1)如图①,求证: MAMN

(2)如图②,连接 ANOAN的中点, MO的延长线交边 AB于点 P,当 S AMN S BCD = 13 18 时,求 ANPM的长;

(3)如图③,过点 NNHBDH,当 AM=2 5 时,求△ HMN的面积.

如图,在⊙ O中, B是⊙ O上的一点,∠ ABC=120°,弦 AC=2 3 ,弦 BM平分∠ ABCAC于点 D,连接 MAMC

(1)求⊙ O半径的长;

(2)求证: AB+ BCBM

某出租公司有若干辆同一型号的货车对外出租,每辆货车的日租金实行淡季、旺季两种价格标准,旺季每辆货车的日租金比淡季上涨 1 3 .据统计,淡季该公司平均每天有10辆货车未出租,日租金总收入为1500元;旺季所有的货车每天能全部租出,日租金总收入为4000元.

(1)该出租公司这批对外出租的货车共有多少辆?淡季每辆货车的日租金多少元?

(2)经市场调查发现,在旺季如果每辆货车的日租金每上涨20元,每天租出去的货车就会减少1辆,不考虑其它因素,每辆货车的日租金上涨多少元时,该出租公司的日租金总收入最高?

如图,在四边形 ABCD中, ADBCABBC,∠ BAD=90°, ACBD于点 E,∠ ABD=30°, AD 3 ,求线段 ACBE的长.

(注: 1 a + b = a - b ( a + b ) ( a - b ) = a - b a - b

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号