某校开展主题为"防疫常识知多少"的调查活动,抽取了部分学生进行调查,调查问卷设置了 :非常了解、 :比较了解、 :基本了解、 :不太了解四个等级,要求每个学生填且只能填其中的一个等级,采取随机抽样的方式,并根据调查结果绘制成如图所示不完整的频数分布表和频数分布直方图,根据以上信息回答下列问题:
等级 |
频数 |
频率 |
|
20 |
0.4 |
|
15 |
|
|
10 |
0.2 |
|
|
0.1 |
(1)频数分布表中 , ,将频数分布直方图补充完整;
(2)若该校有学生1000人,请根据抽样调查结果估算该校"非常了解"和"比较了解"防疫常识的学生共有多少人?
(3)在"非常了解"防疫常识的学生中,某班有5个学生,其中3男2女,计划在这5个学生中随机抽选两个加入防疫志愿者团队,请用列表或画树状图的方法求所选两个学生中至少有一个女生的概率.
如图,⊙O是△ABC的外接圆,AB=AC,连结CO并延长交⊙O的切线AP于点P.
(1)求证:∠APC=∠BCP;
(2)若sin∠APC=,BC=4,求AP的长.
某商场新进一批商品,每个成本价25元,销售一段时间发现销售量y(个)与销售单价x(元/个)之间成一次函数关系,如下表:
(1)求y与x之间的函数关系式;
(2)若该商品的销售单价在45元~80元之间浮动,
①销售单价定为多少元时,销售利润最大?此时销售量为多少?
②商场想要在这段时间内获得4550元的销售利润,销售单价应定为多少元?
为响应推进中小学生素质教育的号召,某校决定在下午15点至16点开设以下选修课:音乐史、管乐、篮球、健美操、油画.为了解同学们的选课情况,某班数学兴趣小组从全校三个年级中各调查一个班级,根据相关数据,绘制如下统计图.
(1)请根据以上信息,直接补全条形统计图(图1)和扇形统计图(图2);
(2)若初一年级有180人,请估算初一年级中有多少学生选修音乐史?
(3)若该校共有学生540人,请估算全校有多少学生选修篮球课?
如图,对称轴为直线x=−的抛物线经过点A(-6,0)和点B(0,4).
(1)求抛物线的解析式和顶点坐标;
(2)设点E(x,y)是抛物线上的一个动点,且位于第三象限,四边形OEAF是以OA为对角线的平行四边形,求▱OEAF的面积S与x的函数关系式,并写出自变量x的取值范围;
①当▱OEAF的面积为24时,请判断▱OEAF是否为菱形?
②是否存在点E,使▱OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.
如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.
(1)若△BPQ与△ABC相似,求t的值;
(2)连接AQ、CP,若AQ⊥CP,求t的值.