如图是某机场监控屏显示两飞机的飞行图象,1号指挥机(看成点 始终以 的速度在离地面 高的上空匀速向右飞行,2号试飞机(看成点 一直保持在1号机 的正下方.2号机从原点 处沿 仰角爬升,到 高的 处便立刻转为水平飞行,再过 到达 处开始沿直线 降落,要求 后到达 处.
(1)求 的 关于 的函数解析式,并直接写出2号机的爬升速度;
(2)求 的 关于 的函数解析式,并预计2号机着陆点的坐标;
(3)通过计算说明两机距离 不超过 的时长是多少.
注:(1)及(2)中不必写 的取值范围
如图,在△ABC中,∠C=90°, AD是∠BAC的平分线,O是AB上一点, 以OA为半径的⊙O经过点D。
(1)求证: BC是⊙O切线;
(2)若BD="5," DC="3," 求AC的长。
计算:是某几何体的平面展开图,求图中小圆的半径.
解方程:
(本小题满分10分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC。
(1)求证:OE=OF;(2)若BC=2,求AB的长。
(本小题满分10分)如图,一次函数y1=+1的图象与反比例函数
(k为常数,且k≠0)的图象都经过点A(m,2)。
(1)求点A的坐标及反比例函数的表达式;
(2)结合图象直接比较:当>0时,
与
的大小。