如图①是甲,乙两个圆柱形水槽的横截面示意图,乙槽中有一圆柱形实心铁块立放其中(圆柱形实心铁块的下底面完全落在乙槽底面上),现将甲槽中的水匀速注入乙槽,甲,乙两个水槽中水的深度 与注水时间 之间的关系如图②所示,根据图象解答下列问题:
(1)图②中折线 表示 槽中水的深度与注入时间之间的关系;线段 表示 槽中水的深度与注入时间之间的关系;铁块的高度为 .
(2)注入多长时间,甲、乙两个水槽中水的深度相同?(请写出必要的计算过程)
解方程
(1)
(2)(x+3)(x-6)=
2015年9月19日第九届合肥文博会开幕.开幕前夕,我市某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销.经过调查,得到如下数据:
销售单价x(元/件) |
… |
20 |
30 |
40 |
50 |
60 |
… |
每天销售量(y件) |
… |
500 |
400 |
300 |
200 |
100 |
… |
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?
(3)开幕后,合肥市物价部门规定,该工艺品销售单价最高不能超过38元/件,那么销售单价定为多少时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少?
如图,小李在一次高尔夫球选拔赛中,从山坡下O点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大水平高度12米时,球移动的水平距离为9米.已知山坡OA与水平方向OC的夹角为30o,O、A两点相距8米.
(1)求直线OA的解析式;
(2)求出球的飞行路线所在抛物线的解析式;
(3)判断小李这一杆能否把高尔夫球从O点直接打入球洞A点.
如图,反比例函数与一次函数
的图象交于两点A(1,3)、B(n,-1).
(1)求这两个函数的解析式;
(2)观察图象,请直接写出不等式的解集;
(3)点C为x轴正半轴上一点,连接AO、AC,且AO=AC,求⊿AOC的面积.
已知二次函数.
(1)求证:不论为何实数,此二次函数的图象与
轴都有两个不同交点;
(2)若此函数有最小值
,求这个函数表达式.