游客
题文

问题提出

如图(1),在 ΔA BC ΔDEC 中, ACB = DCE = 90 ° BC = AC EC = DC ,点 E ΔABC 内部,直线 AD BE 于点 F .线段 AF BF CF 之间存在怎样的数量关系?

问题探究

(1)先将问题特殊化如图(2),当点 D F 重合时,直接写出一个等式,表示 AF BF CF 之间的数量关系;

(2)再探究一般情形如图(1),当点 D F 不重合时,证明(1)中的结论仍然成立.

问题拓展

如图(3),在 ΔABC ΔDEC 中, ACB = DCE = 90 ° BC = kAC EC = kDC ( k 是常数),点 E ΔABC 内部,直线 AD BE 交于点 F .直接写出一个等式,表示线段 AF BF CF 之间的数量关系.

科目 数学   题型 解答题   难度 较难
知识点: 相似三角形的判定与性质 全等三角形的判定与性质 三角形综合题
登录免费查看答案和解析
相关试题

(本题8分)我校八(2)班共有50名学生,老师安排每人制作一件A型或B型的陶艺品,学校现有甲种制作材料36kg,乙种制作材料29kg,制作A、B两种型号的陶艺品用料情况如下表:


需甲种材料
需乙种材料
1件A型陶艺品
0.9kg
0.3kg
1件B型陶艺品
0.4kg
1kg


(1)设制作B型陶艺品x件,求x的取值范围;
(2)请你根据学校现有材料,分别写出八(2)班制作A型和B型陶艺品的件数.

(本题5分)若关于x的方程的解是关于x的方程的解,求a的取值范围.

(本题8分):如图,已知AB∥CD,∠BED=90°,那么∠B+∠D等于多少度?为什么?

(本题5分)解分式方程:

(本题5分)先化简,再求值:,其中

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号