国家规定“中小学生每天在校体育活动时间不低于 ”.为此,某市就“每天在校体育活动时间”的问题随机调查了辖区内部分初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:
组:
组:
组:
组:
请根据上述信息解答下列问题:
(1)本次调查的人数是 人;
(2)请根据题中的信息补全频数分布直方图;
(3) 组对应扇形的圆心角为 ;
(4)本次调查数据的中位数落在 组内;
(5)若该市辖区约有80000名初中学生,请估计其中达到国家规定体育活动时间的学生人数约有多少.
已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.
(1)求证:AH=2OM;
(2)若∠BAC=60°,求证:AH=AO.(初二)
如图,△ABC是⊙O的内接三角形,AC=BC,D为⊙O中上一点,延长DA至点E,使CE=CD.
(1)求证:AE=BD;
(2)若AC⊥BC,求证:.
(1)计算;
(2)已知,四边形ABCD顶点都在4×4正方形网格的格点上,如图所示,请用直尺和圆规画出四边形ABCD的外接圆,并标明圆心M的位置.这个圆中所对的圆心角的度数是.
已知,如图,AD为△ABC的内角平分线,且AD=AB,CM⊥AD于M.求证:AM=(AB+AC).
某校初三(1)班进行立定跳远训练,以下是李超和陈辉同学六次的训练成绩(单位:m)
李超:2.50,2.42,2.52,2.56,2.48,2.58
陈辉:2.54,2.48,2.50,2.48,2.54,2.52
(1)李超和陈辉的平均成绩分别是多少?
(2)分别计算两人的六次成绩的方差,哪个人的成绩更稳定?为什么?
(3)若预知参加级的比赛能跳过2.55米就可能得冠军,应选哪个同学参加?为什么?