《九章算术》中记载,浮箭漏(图① 出现于汉武帝时期,它由供水壶和箭壶组成,箭壶内装有箭尺,水匀速地从供水壶流到箭壶,箭壶中的水位逐渐上升,箭尺匀速上浮,可通过读取箭尺读数计算时间.某学校 小组仿制了一套浮箭漏,并从函数角度进行了如下实验探究:
【实验观察】实验小组通过观察,每2小时记录一次箭尺读数,得到如表:
供水时间 (小时) |
0 |
2 |
4 |
6 |
8 |
箭尺读数 (厘米) |
6 |
18 |
30 |
42 |
54 |
【探索发现】①建立平面直角坐标系,如图②,横轴表示供水时间 .纵轴表示箭尺读数 ,描出以表格中数据为坐标的各点.
②观察上述各点的分布规律,判断它们是否在同一条直线上,如果在同一条直线上,求出这条直线所对应的函数表达式,如果不在同一条直线上,说明理由.
【结论应用】应用上述发现的规律估算:
①供水时间达到12小时时,箭尺的读数为多少厘米?
②如果本次实验记录的开始时间是上午 ,那当箭尺读数为90厘米时是几点钟?(箭尺最大读数为100厘米)
已知关于的一元二次方程
有两个实数根
和
.
(1)求实数的取值范围;
(2)当时,求
的值.
解下列方程(每小题3分,共9分)
(1)
(2)
(3)
如图1,已知矩形纸片ABCD中,AB=6cm,若将该纸片沿着过点B的直线折叠(折痕为BM),点A恰好落在CD边的中点P处.
(1)求矩形ABCD的边AD的长.
(2)若P为CD边上的一个动点,折叠纸片,使得A与P重合,折痕为MN,其中M在边AD上,N在边BC上,如图2所示.设DP=x cm,DM=y cm,试求y与x的函数关系式,并指出自变量x的取值范围.
(3)①当折痕MN的端点N在AB上时,求当△PCN为等腰三角形时x的值;
②当折痕MN的端点M在CD上时,设折叠后重叠部分的面积为S,试求S与x之间的函数关系式
如图,二次函数y=a+bx+c的图象交x轴于A、B两点,交y轴于点C.且B(1,0),若将△BOC绕点O逆时针旋转90°,所得△DOE的顶点E恰好与点A重合,且△ACD的面积为3.
(1)求这个二次函数的关系式.
(2)设这个二次函数图象的顶点为M,请在y轴上找一点P,使得△PAM的周长最小,并求出点P的坐标.
(3)设这个函数图象的对称轴l交x轴于点N,问:A、M、C、D、N这5个点是否会在同一个圆上?若在同一个圆上,请求出这个圆的圆心坐标,并作简要说明;若不可能,请说明理由.
为了调动同学们的学习积极性,某班班主任陈老师在班级管理中采用了奖励机制,每次期中期末考试后都会进行表彰奖励.期中考试后,陈老师花了300元购买甲、乙两种奖品用于奖励进步显著学生及成绩特别优秀学生.期末考试后,陈老师再次去购买奖品时,发现甲奖品每件上涨了6元,乙奖品每件上涨了12元,结果购买相同数量的甲、乙两种奖品却多花了120元.设陈老师每次购买甲奖品x件,乙奖品y件.
(1)请直接写出y与x之间的函数关系式: .
(2)若x=8,且这两种奖品不再调价.若陈老师再次去购买奖品,且所买甲奖品比前两次都少1件,则他最多买几件乙奖品,才能把奖品总费用控制在300元以内?
【备注:已知陈老师第一次购买奖品发现,甲奖品比乙奖品便宜,两种奖品单价(元)都在30以内且为偶数.】