在平面直角坐标系中,抛物线 为常数)的顶点为 .
(1)当 时,点 的坐标是 ,抛物线与 轴交点的坐标是 ;
(2)若点 在第一象限,且 ,求此抛物线所对应的二次函数的表达式,并写出函数值 随 的增大而减小时 的取值范围;
(3)当 时,若函数 的最小值为3,求 的值;
(4)分别过点 、 作 轴的垂线,交抛物线的对称轴于点 、 .当抛物线 与四边形 的边有两个交点时,将这两个交点分别记为点 、点 ,且点 的纵坐标大于点 的纵坐标.若点 到 轴的距离与点 到 轴的距离相等,直接写出 的值.
某游乐场的圆形喷水池中心 有一雕塑 ,从 点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为 轴,点 为原点建立直角坐标系,点 在 轴上, 轴上的点 , 为水柱的落水点,水柱所在抛物线(第一象限部分)的函数表达式为 .
(1)求雕塑高 .
(2)求落水点 , 之间的距离.
(3)若需要在 上的点 处竖立雕塑 , , , .问:顶部 是否会碰到水柱?请通过计算说明.
小聪、小明准备代表班级参加学校"党史知识"竞赛,班主任对这两名同学测试了6次,获得如图测试成绩折线统计图.根据图中信息,解答下列问题:
(1)要评价每位同学成绩的平均水平,你选择什么统计量?求这个统计量.
(2)求小聪成绩的方差.
(3)现求得小明成绩的方差为 (单位:平方分).根据折线统计图及上面两小题的计算,你认为哪位同学的成绩较好?请简述理由.
已知:如图,矩形 的对角线 , 相交于点 , , .
(1)求矩形对角线的长;
(2)过 作 于点 ,连结 .记 ,求 的值.
已知 ,求 的值.
计算: .