游客
题文

在平面直角坐标系中,抛物线 y = 2 ( x - m ) 2 + 2 m ( m 为常数)的顶点为 A

(1)当 m = 1 2 时,点 A 的坐标是   ,抛物线与 y 轴交点的坐标是   

(2)若点 A 在第一象限,且 OA = 5 ,求此抛物线所对应的二次函数的表达式,并写出函数值 y x 的增大而减小时 x 的取值范围;

(3)当 x 2 m 时,若函数 y = 2 ( x - m ) 2 + 2 m 的最小值为3,求 m 的值;

(4)分别过点 P ( 4 , 2 ) Q ( 4 , 2 - 2 m ) y 轴的垂线,交抛物线的对称轴于点 M N .当抛物线 y = 2 ( x - m ) 2 + 2 m 与四边形 PQNM 的边有两个交点时,将这两个交点分别记为点 B 、点 C ,且点 B 的纵坐标大于点 C 的纵坐标.若点 B y 轴的距离与点 C x 轴的距离相等,直接写出 m 的值.

科目 数学   题型 解答题   难度 困难
知识点: 二次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

某游乐场的圆形喷水池中心 O 有一雕塑 OA ,从 A 点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为 x 轴,点 O 为原点建立直角坐标系,点 A y 轴上, x 轴上的点 C D 为水柱的落水点,水柱所在抛物线(第一象限部分)的函数表达式为 y = - 1 6 ( x - 5 ) 2 + 6

(1)求雕塑高 OA

(2)求落水点 C D 之间的距离.

(3)若需要在 OD 上的点 E 处竖立雕塑 EF OE = 10 m EF = 1 . 8 m EF OD .问:顶部 F 是否会碰到水柱?请通过计算说明.

小聪、小明准备代表班级参加学校"党史知识"竞赛,班主任对这两名同学测试了6次,获得如图测试成绩折线统计图.根据图中信息,解答下列问题:

(1)要评价每位同学成绩的平均水平,你选择什么统计量?求这个统计量.

(2)求小聪成绩的方差.

(3)现求得小明成绩的方差为 S 小明 2 = 3 (单位:平方分).根据折线统计图及上面两小题的计算,你认为哪位同学的成绩较好?请简述理由.

已知:如图,矩形 ABCD 的对角线 AC BD 相交于点 O BOC = 120 ° AB = 2

(1)求矩形对角线的长;

(2)过 O OE AD 于点 E ,连结 BE .记 ABE = α ,求 tan α 的值.

已知 x = 1 6 ,求 ( 3 x - 1 ) 2 + ( 1 + 3 x ) ( 1 - 3 x ) 的值.

计算: ( - 1 ) 2021 + 8 - 4 sin 45 ° + | - 2 |

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号