游客
题文

【阅读】

通过构造恰当的图形,可以对线段长度、图形面积大小等进行比较,直观地得到一些不等关系或最值,这是"数形结合"思想的典型应用.

【理解】

(1)如图1, AC BC CD AB ,垂足分别为 C D E AB 的中点,连接 CE .已知 AD = a BD = b ( 0 < a < b )

①分别求线段 CE CD 的长(用含 a b 的代数式表示);

②比较大小: CE     CD (填" < "、" = "或" > " ) ,并用含 a b 的代数式表示该大小关系.

【应用】

(2)如图2,在平面直角坐标系 xOy 中,点 M N 在反比例函数 y = 1 x ( x > 0 ) 的图象上,横坐标分别为 m n .设 p = m + n q = 1 m + 1 n ,记 l = 1 4 pq

①当 m = 1 n = 2 时, l =   ;当 m = 3 n = 3 时, l =   

②通过归纳猜想,可得 l 的最小值是   .请根据图2构造恰当的图形,并说明你的猜想成立.

科目 数学   题型 解答题   难度 较难
知识点: 反比例函数的性质 反比例函数系数k的几何意义 相似三角形的判定与性质
登录免费查看答案和解析
相关试题

请把下列各数填入相应的集合中
, 5.2, 0, ,,2005 , -0.030030003…
正数集合:{…}分数集合:{…}
非负整数集合:{…}有理数集合:{…}

从2开始,连续的偶数相加,它们的和的情况如下表:
加数m的个数和(S)
1 ———————————→2=1×2
2 ————————→2+4=6=2×3
3 ——————→2+4+6=12=3×4
4 ————→2+4+6+8=20=4×5
5 ——→2+4+6+8+10=30=5×6
(1)按这个规律,当m=6时,和为_______;
(2)从2开始,m个连续偶数相加,它们的和S与m之间的关系,用公式表示出来为:
__________________________________________.
(3)应用上述公式计算:
①2+4+6+…+200   ②202+204+206+…+300

已知A、B在数轴上分别表示a,b.
(1)对照数轴填写下表:

(2)若A、B两点间的距离记为d,试问:d和a,b有何数量关系?
(3)在数轴上标出所有符合条件的整数点P,使它到10和-10的距离之和为20,并求所有这些整数的和;
(4)找出(3)中满足到10和-10的距离之差大于1而小于5的整数的点P;
(5)若点C表示的数为x,当点C在什么位置时,取得的值最小?

如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动。它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负。如果从A到B记为:A→B(+l,+3);从C到D记为:C→D(+1,-2)。其中第一个数表示左右方向,第二个数表示上下方向,那么图中

(1)A→C(),C→(-2,);
(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;
(3)假如这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,-1),(-2,+3),请在图中标出P的位置。

根据某地实验测得的数据表明,高度每增加1 km,气温大约下降6℃,已知该地地面温度为21℃.
(1)高空某处高度是8 km,求此处的温度是多少;
(2)高空某处温度为一24 ℃,求此处的高度.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号