已知正方形 与正方形 ,正方形 绕点 旋转一周.
(1)如图①,连接 、 ,求 的值;
(2)当正方形 旋转至图②位置时,连接 、 ,分别取 、 的中点 、 ,连接 、试探究: 与 的关系,并说明理由;
(3)连接 、 ,分别取 、 的中点 、 ,连接 , ,请直接写出线段 扫过的面积.
(本小题满分8分)已知:如图,在平行四边形ABCD中,点M在边AD上,且AM=DM.CM、BA的延长线相交于点E.求证:
(1)AE=AB;
(2)如果BM平分∠ABC,求证:BM⊥CE.
(本小题满分8分)为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:
(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;
(2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.
(本小题满分7分)
(本题共2个小题,第1小题3分,第2小题4分,共7分)
(1)4sin60°--2
-
(2)先化简,再求值:(2a+b)(2a-b)+,其中a=6,b=-
.
已知直线与茹
、
轴分别相交于B,A两点,抛物线
过A,B两点,且对称轴为直线
.
(1)求A,B两点的坐标,并求抛物线的解析式;
(2)若点P以1个单位/秒的速度从点B沿轴向点O运动.过点P作
轴的平行线交直线AB于点M,交抛物线于点N.设点P运动的时间为
,MN的长度为S,求S与
之间的函数关系式,并求出当
为何值时,S取得最大值?
(3)设抛物线的对称轴CD与直线AB相交于点D,顶点为C.问:在(2)条件不变情况下,是否存在一个值,使四边形CDMN是平行四边形?若存在,求出
的值;若不存在,请说明理由.
如图,已知矩形ABCD,AB=,BC=3,在BC上取两点E,F(E在F左边),以时为边作等边三角形PEF,使顶点P在AD上,PE,PF分别交AC于点G,H.
(1)求△PEF的边长;
(2)在不添加辅助线的情况下,当F与C不重合时,从图中找出一对相似三角形 (不含全等形),并证明;
(3)若△PEF的边EF在线段BC上以每秒1个单位的速度移动.设BE的长为,PH的长为
,请你写出
与
的函数式,并指出函数自变量的取值范围.