游客
题文

甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:

甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元.

乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.

说明:①汽车数量为整数;②月利润 = 月租车费 - 月维护费;③两公司月利润差 = 月利润较高公司的利润 - 月利润较低公司的利润.

在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:

(1)当每个公司租出的汽车为10辆时,甲公司的月利润是   48000  元;当每个公司租出的汽车为   辆时,两公司的月利润相等;

(2)求两公司月利润差的最大值;

(3)甲公司热心公益事业,每租出1辆汽车捐出 a ( a > 0 ) 给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求 a 的取值范围.

科目 数学   题型 解答题   难度 较难
知识点: 一元二次方程的应用 二次函数的应用
登录免费查看答案和解析
相关试题

如图,已知在△中,是边上的中线,设

(1)求(用向量的式子表示)
(2)如果点在中线上,求作方向上的分向量;(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的分向量)

已知在直角坐标平面内,抛物线经过轴上两点,点的坐标为,与轴相交于点
(1)求抛物线的表达式;
(2)求△的面积;

如图,已知平面直角坐标系中,⊙O的圆心在坐标原点,直线l与轴相交于点P,与⊙O相交于A、B两点,∠AOB=90°.点A和点B的横坐标是方程x2-x-k="0" 的两根,且两根之差为3.

(1)求方程x2-x-k="0" 的两根;
(2)求A、B两点的坐标及⊙O的半径;
(3)把直线l绕点P旋转,使直线l与⊙O相切,求直线l的解析式.

如图1,在面积为3的正方形ABCD中,E、F分别是BC和CD边上的两点,AE⊥BF于点G,且BE=1,∠BAE=30°.

(1)求证:△ABE≌△BCF;
(2)求出△ABE和△BCF重叠部分(即△BEG)的面积;
(3)现将△ABE绕点A逆时针方向旋转到△AB'E'(如图2),使点E落在CD边上的点E'处,问△ABE在旋转前后与△BCF重叠部分的面积是否发生了变化?请说明理由.

某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.
(1)写出月销售利润y(单位:元)与售价x(单位:元/件)之间的函数解析式.
(2)当销售价定为45元时,计算月销售量和销售利润.
(3)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10000元,销售价应定为多少?
(4)当销售价定为多少元时会获得最大利润?求出最大利润.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号