游客
题文

如图,正比例函数 y = x 的图象与反比例函数 y = k x ( x > 0 ) 的图象交于点 A ( 1 , a ) ΔABC 中, ACB = 90 ° CA = CB ,点 C 坐标为 ( - 2 , 0 )

(1)求 k 的值;

(2)求 AB 所在直线的解析式.

科目 数学   题型 解答题   难度 中等
知识点: 反比例函数与一次函数的交点问题 待定系数法求一次函数解析式 全等三角形的判定与性质 等腰直角三角形
登录免费查看答案和解析
相关试题

计算:

(1) | - 1 2 | - ( - 2 ) 3 + sin 30 °

(2) 4 a - a + 8 2 a

如图,抛物线 y = - 1 2 x 2 + bx + c x 轴交于 A ( - 1 , 0 ) B ( 4 , 0 ) ,与 y 轴交于点 C .连接 AC BC ,点 P 在抛物线上运动.

(1)求抛物线的表达式;

(2)如图①,若点 P 在第四象限,点 Q PA 的延长线上,当 CAQ = CBA + 45 ° 时,求点 P 的坐标;

(3)如图②,若点 P 在第一象限,直线 AP BC 于点 F ,过点 P x 轴的垂线交 BC 于点 H ,当 ΔPFH 为等腰三角形时,求线段 PH 的长.

已知正方形 ABCD 与正方形 AEFG ,正方形 AEFG 绕点 A 旋转一周.

(1)如图①,连接 BG CF ,求 CF BG 的值;

(2)当正方形 AEFG 旋转至图②位置时,连接 CF BE ,分别取 CF BE 的中点 M N ,连接 MN 、试探究: MN BE 的关系,并说明理由;

(3)连接 BE BF ,分别取 BE BF 的中点 N Q ,连接 QN AE = 6 ,请直接写出线段 QN 扫过的面积.

一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离 s ( km ) 与慢车行驶的时间 t ( h ) 之间的关系如图:

(1)快车的速度为    km / h C 点的坐标为   

(2)慢车出发多少小时后,两车相距 200 km

如图,在 Rt Δ AOB 中, AOB = 90 ° ,以点 O 为圆心, OA 为半径的圆交 AB 于点 C ,点 D 在边 OB 上,且 CD = BD

(1)判断直线 CD O 的位置关系,并说明理由;

(2)已知 tan ODC = 24 7 AB = 40 ,求 O 的半径.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号