已知 ΔAOB 和 ΔMON 都是等腰直角三角形 ( 2 2 OA < OM < OA ) , ∠ AOB = ∠ MON = 90 ° .
(1)如图1,连接 AM , BN ,求证: AM = BN ;
(2)将 ΔMON 绕点 O 顺时针旋转.
①如图2,当点 M 恰好在 AB 边上时,求证: A M 2 + B M 2 = 2 O M 2 ;
②当点 A , M , N 在同一条直线上时,若 OA = 4 , OM = 3 ,请直接写出线段 AM 的长.
解方程: (1)+1=;(2)-=.
计算: (1)-x+y;(2)÷.
解不等式组:并把解集在数轴上表示出来.
解不等式:3(x-1)+2≥2(x-3).
我们把能平分四边形面积的直线称为“好线”.利用下面的作图,可以得到四边形的“好线”:如图1,在四边形ABCD中,取对角线BD的中点O,连结OA、OC. 显然,折线AOC能平分四边形ABCD的面积,再过点O作OE∥AC交CD于E,则直线AE即为一条“好线”. (1)试说明直线AE是“好线”的理由; (2)如图2,AE为一条“好线”,F为AD边上的一点,请作出经过F点的“好线”,只需对画图步骤作适当说明(不需要说明“好线”的理由).
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号