游客
题文

如图1,对角线互相垂直的四边形叫做垂美四边形.

(1)概念理解:如图2,在四边形 ABCD 中, AB = AD CB = CD ,问四边形 ABCD 是垂美四边形吗?请说明理由;

(2)性质探究:如图1,垂美四边形 ABCD 的对角线 AC BD 交于点 O .猜想: A B 2 + C D 2 A D 2 + B C 2 有什么关系?并证明你的猜想.

(3)解决问题:如图3,分别以 Rt Δ ACB 的直角边 AC 和斜边 AB 为边向外作正方形 ACFG 和正方形 ABDE ,连结 CE BG GE .已知 AC = 4 AB = 5 ,求 GE 的长.

科目 数学   题型 解答题   难度 中等
知识点: 线段垂直平分线逆定理
登录免费查看答案和解析
相关试题

(贵港)已知:△ABC是等腰三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:
(1)如图①,若点P在线段AB上,且AC=,PA=,则:①线段PB= ,PC=
②猜想:三者之间的数量关系为
(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;
(3)若动点P满足,求的值.(提示:请利用备用图进行探求)

(贵港)如图,抛物线与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为
(1)求抛物线的解析式并写出其顶点坐标;
(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.
①当PA⊥NA,且PA=NA时,求此时点P的坐标;
②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.

(贵港)如图,已知AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,且点E是OD的中点,⊙O的切线BM与AO的延长线相交于点M,连接AC,CM.
(1)若AB=,求的长;(结果保留π)
(2)求证:四边形ABMC是菱形.

(贵港)如图,一次函数的图象与反比例函数的图象交于点A和点B(﹣2,n),与x轴交于点C(﹣1,0),连接OA.
(1)求一次函数和反比例函数的解析式;
(2)若点P在坐标轴上,且满足PA=OA,求点P的坐标.

(崇左)如图,在平面直角坐标系中,点M的坐标是(5,4),⊙M与y轴相切于点C,与x轴相交于A、B两点.
(1)则点A、B、C的坐标分别是A(__,__),B(__,__),C(__,__);
(2)设经过A、B两点的抛物线解析式为,它的顶点为F,求证:直线FA与⊙M相切;
(3)在抛物线的对称轴上,是否存在点P,且点P在x轴的上方,使△PBC是等腰三角形.如果存在,请求出点P的坐标;如果不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号