为改善城市人居环境,《成都市生活垃圾管理条例》(以下简称《条例》 于2021年3月1日起正式施行.某区域原来每天需要处理生活垃圾920吨,刚好被12个 型和10个 型预处置点位进行初筛、压缩等处理.已知一个 型点位比一个 型点位每天多处理7吨生活垃圾.
(1)求每个 型点位每天处理生活垃圾的吨数;
(2)由于《条例》的施行,垃圾分类要求提高,在每个点位每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该区域每天需要处理的生活垃圾比原来少10吨.若该区域计划增设 型、 型点位共5个,试问至少需要增设几个 型点位才能当日处理完所有生活垃圾?
化简求值:,其中
计算与化简:(1)
(2)20122-2011×2013
(3)
如图,抛物线y=-x2+mx+n与x轴分别交于点A(4,0),B(-2,0),与y轴交于点C.
(1)求该抛物线的解析式;
(2)M为第一象限内抛物线上一动点,点M在何处时,△ACM的面积最大;
(3)在抛物线的对称轴上是否存在这样的点P,使得△PAC为直角三角形?若存在,请求出所有可能点P的坐标;若不存在,请说明理由.
如图,平面直角坐标系中,直线y=-x+8分别交x轴、y轴于点B、点A,点D从点A出发沿射线AB方向以每秒1个单位长的速度匀速运动,同时点E从点B出发沿射线BC方向以每秒
个单位长的速度匀速运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥AO于点F,连接DE、EF.
(1)当t为何值时,△BDE与△BAO相似;
(2)写出以点D、F、E、O为顶点的四边形面积s与运动时间t之间的函数关系;
(3)是否存在这样一个时刻,此时以点D、F、E、B为顶点的四边形是菱形,如果存在,求出相应的t的值;如果不存在,请说明理由.
如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AC于点O.
(1)△ABF≌△CAE;
(2)HD平分∠AHC吗?为什么?