游客
题文

如图,已知抛物线 y = a x 2 + bx + 4 ( a 0 ) x 轴交于点 A ( 1 , 0 ) B ,与 y 轴交于点 C ,对称轴为直线 x = 5 2

(1)求抛物线的解析式;

(2)如图1,若点 P 是线段 BC 上的一个动点(不与点 B C 重合),过点 P y 轴的平行线交抛物线于点 Q ,连接 OQ ,当线段 PQ 长度最大时,判断四边形 OCPQ 的形状并说明理由;

(3)如图2,在(2)的条件下, D OC 的中点,过点 Q 的直线与抛物线交于点 E ,且 DQE = 2 ODQ .在 y 轴上是否存在点 F ,得 ΔBEF 为等腰三角形?若存在,求点 F 的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 困难
知识点: 二次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.

(1)已求得甲的平均成绩为8环,求乙的平均成绩;
(2)观察图形,直接写出甲,乙这10次射击成绩的方差哪个大;
(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选参赛更合适.

图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:

(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;
(2)在图②中,以格点为顶点,AB为一边画一个正方形;
(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.

如图,在▱ABCD中,AE⊥BC,交边BC于点E,点F为边CD上一点,且DF=BE.过点F作FG⊥CD,交边AD于点G.求证:DG=DC.

甲口袋中装有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3,4和5,从两个口袋中各随机取出1个小球.用画树状图或列表的方法,求取出的2个小球上的数字之和为6的概率.

根据图中的信息,求梅花鹿和长颈鹿现在的高度.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号