如图,在 中, 是直径, 是弦, ,垂足为 ,过点 的 的切线与 延长线交于点 ,连接 .
(1)求证: 为 的切线;
(2)若 半径为3, ,求 .
一幢房屋的侧面外墙壁的形状如图所示,它由等腰三角形OCD和矩形ABCD组成,∠OCD=25°,外墙壁上用涂料涂成颜色相同的条纹,其中一块的形状是四边形EFGH,测得FG∥EH,GH=2.6m,∠FGB=65°。
(1)求证:GF⊥OC;
(2)求EF的长(结果精确到0.1m)。
(参考数据:sin25°=cos65°≈0.42,cos25°=sin65°≈0.91)
某文具商店共有单价分别为10元、15元和20元的3种文具盒出售,该商店统计了2011年3月份这3种文具盒的销售情况,并绘制统计图如下:
(1)请在图②中把条形统计图补充完整.
(2)小亮认为:该商店3月份这3种文具盒总的平均销售价格为(元),你认为小亮的计算方法正确吗?如不正确,请计算出总的平均销售价格.
一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外其余都相同,搅匀后从中任意摸出1个球,记录下颜色后放回袋中并搅匀,再从中任意摸出1个球。请用画树状图的方法列出所有可能的结果,并写出两次摸出的球颜色相同的概率。
(11·珠海)如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,
AD=AB=1,BC=2.将点A折叠到CD边上,记折叠后A点对应的点为P(P与D点不重
合),折痕EF只与边AD、BC相交,交点分别为E、F.过点P作PN∥BC交AB于N、交
EF于M,连结PA、PE、AM,EF与PA相交于O.
(1)指出四边形PEAM的形状(不需证明);
(2)记∠EPM=a,△AOM、△AMN的面积分别为S1、S2.
(11·珠海)已知:如图,锐角△ABC内接于⊙O,∠ABC=45°;
点D是上一点,过点D的切线DE交AC的延长线于点E,且DE∥BC;连结AD、BD、
BE,AD的垂线AF与DC的延长线交于点F.
(1)求证:△ABD∽△ADE;
(2)记△DAF、△BAE的面积分别为S△DAF、S△BAE,求证:S△DAF>S△BAE.