在直角坐标系中,设函数 y 1 = k 1 x ( k 1 是常数, k 1 > 0 , x > 0 ) 与函数 y 2 = k 2 x ( k 2 是常数, k 2 ≠ 0 ) 的图象交于点 A ,点 A 关于 y 轴的对称点为点 B .
(1)若点 B 的坐标为 ( - 1 , 2 ) ,
①求 k 1 , k 2 的值;
②当 y 1 < y 2 时,写出 x 的取值范围;
(2)若点 B 在函数 y 3 = k 3 x ( k 3 是常数, k 3 ≠ 0 ) 的图象上,求 k 1 + k 3 的值.
解方程:
如图,△ABC中,∠ACB=Rt∠,AB=,BC=,求斜边AB上的高CD.
计算:.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号