游客
题文

为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了 100 天空气中的 PM 2 . 5 S O 2 浓度(单位: μ g/ m 3 ),得下表:

        S O 2

PM 2 . 5

[ 0 , 50 ]

( 50 , 150 ]

( 150 , 475 ]

[ 0 , 35 ]

32

18

4

( 35 , 75 ]

6

8

12

( 75 , 115 ]

3

7

10

(1)估计事件"该市一天空气中 PM 2 . 5 浓度不超过 75 ,且 S O 2 浓度不超过 150 "的概率;

(2)根据所给数据,完成下面的 2 × 2 列联表:

         S O 2

PM 2 . 5

[ 0 , 150 ]

( 150 , 475 ]

[ 0 , 75 ]



( 75 , 115 ]



(3)根据(2)中的列联表,判断是否有 99 % 的把握认为该市一天空气中 PM 2 . 5 浓度与 S O 2 浓度有关?

附: K 2 = n ( ad - bc ) 2 ( a + b ) ( c + d ) ( a + c ) ( b + d )

P ( K 2 k )

0.050           

0.010

0.001

k

3.841              

6.635

10.828

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

【原创】如图,

(1)求证
(2)若,求点到平面的距离.

求直线的倾斜角.(若,则有

如图,在四棱锥P-ABCD中,四边形ABCD是矩形,侧面PAD⊥底面ABCD,若点E,F分别是PC,BD的中点。

(1)求证:EF∥平面PAD;
(2)求证:平面PAD⊥平面PCD

如图,在梯形ABCD中,AB∥CD,,平面平面,四边形是矩形,,点在线段上。

(1)求证:平面
(2)当为何值时,∥平面?写出结论,并加以证明;
(3)当EM为何值时,AM⊥BE?写出结论,并加以证明。

【改编】在正四棱柱中,已知底面的边长为2,点P是的中点,且.

(1)求的长;
(2)求点到平面的距离.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号