游客
题文

为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了 100 天空气中的 PM 2 . 5 S O 2 浓度(单位: μ g/ m 3 ),得下表:

        S O 2

PM 2 . 5

[ 0 , 50 ]

( 50 , 150 ]

( 150 , 475 ]

[ 0 , 35 ]

32

18

4

( 35 , 75 ]

6

8

12

( 75 , 115 ]

3

7

10

(1)估计事件"该市一天空气中 PM 2 . 5 浓度不超过 75 ,且 S O 2 浓度不超过 150 "的概率;

(2)根据所给数据,完成下面的 2 × 2 列联表:

         S O 2

PM 2 . 5

[ 0 , 150 ]

( 150 , 475 ]

[ 0 , 75 ]



( 75 , 115 ]



(3)根据(2)中的列联表,判断是否有 99 % 的把握认为该市一天空气中 PM 2 . 5 浓度与 S O 2 浓度有关?

附: K 2 = n ( ad - bc ) 2 ( a + b ) ( c + d ) ( a + c ) ( b + d )

P ( K 2 k )

0.050           

0.010

0.001

k

3.841              

6.635

10.828

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本小题满分14分)已知直线上有一个动点,过点作直线垂直于轴,动点上,且满足为坐标原点),记点的轨迹为
(1)求曲线的方程;
(2)若直线是曲线的一条切线,当点到直线的距离最短时,求直线的方程.

(本小题满分14分)已知递增等差数列中的是函数的两个零点.数列满足,点在直线上,其中是数列的前项和.
(1)求数列的通项公式;
(2)令,求数列的前n项和

(本小题满分14分)如图,在直三棱柱中,分别是的中点.

(1)求证:∥平面
(2)求证:平面平面
(3)若,求三棱锥的体积.

(本小题满分12分)
惠州市某县区共有甲、乙、丙三所高中的高三文科学生共有800人,各学校男、女生人数如下表:

已知在三所高中的所有高三文科学生中随机抽取1人,抽到乙高中女生的概率为
(1)求表中的值;
(2)惠州市第三次调研考试后,该县区决定从三所高中的所有高三文科学生中利用随机数表法抽取100人进行成绩统计分析,先将800人按001,002, ,800进行编号。如果从第8行第7列的数开始向右读,请你依次写出最先抽取的3个人的编号;(下面摘取了随机数表中第7行至第9行)
8442 1753 3157 2455 0688 7704 7447 6721 7633 5026 8392
6301 5316 5916 9275 3862 9821 5071 7512 8673 5807 4439
1326 3321 1342 7864 1607 8252 0744 3815 0324 4299 7931
(3)已知,求丙高中学校中的女生比男生人数多的概率.

(本小题满分12分)已知向量.令
(1)求的最小正周期;
(2)当时,求的最小值以及取得最小值时的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号