游客
题文

已知椭圆C x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的离心率为 2 2 ,且过点A(2,1).

(1)求C的方程:

(2)点MNC上,且AMANADMND为垂足.证明:存在定点Q,使得|DQ|为定值.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)当时,求的值域.

已知函数.
(1)当时,试确定函数在其定义域内的单调性;
(2)求函数上的最小值;
(3)试证明:.

设函数(其中),且方程的两个根分别为.
(1)当且曲线过原点时,求的解析式;
(2)若无极值点,求的取值范围.

设函数,其中角的顶点与坐标原点重合,始边与轴非负半轴重合,
终边经过点,且.
(1)若点的坐标为,求的值;
(2)若点为平面区域上的一个动点,试确定角的取值范围,并求函数的最小值和最大值.

已知函数.
(1)求的最小正周期和最大值;
(2)若为锐角,且,求的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号