如图, 在四棱锥 中, 平面 平面 , .
(1) 求证: 平面 ;
(2) 求直线 与平面 所成角的正弦值;
(3) 在棱 上是否存在点 , 使得 平面 ? 若存在, 求 的值; 若不存在, 说明理由.
已知拋物线的顶点在原点,它的准线过双曲线=1的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,拋物线与双曲线交于点P
,求拋物线方程和双曲线方程.
(本小题12分)如图,已知椭圆的长轴为
,过点
的直线
与
轴垂直.直线
所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率
。
(1)求椭圆的标准方程;
(2)设是椭圆上异于
、
的任意一点,
轴,
为垂足,延长
到点
使得
,连结
延长交直线
于点
,
为
的中点.试判断直线
与以
为直径的圆
的位置关系。
(本小题12分)如图,在棱长为2的正方体中,
为
的中点,
为
的中点.
(1)求证://平面
;(2)求三棱锥
的体积;
(3)求二面角的余弦值。
(本小题12分)已知抛物线,焦点为
,顶点为
,点
在抛物线上移动,
是
的中点。
(1)求点的轨迹方程;
(2)若倾斜角为60°且过点的直线交
的轨迹于
两点,求弦长
。
.(本小题12分)如图,在四棱锥S—ABCD中,底面ABCD,底面ABCD是平行四边形,
,E是SC的中点。
(1)求证:;
(2)若SD=2,求二面角E—BD—C的余弦值。