如图,在极坐标系 中, , , , ,弧 , , 所在圆的圆心分别是 , , ,曲线 是弧 ,曲线 是弧 ,曲线 是弧 .
(1)分别写出 , , 的极坐标方程;
(2)曲线 由 , , 构成,若点 在 上,且 ,求 的极坐标.
(本小题满分12分)
如图,在三棱柱ABC—A1B1C1中,AA1⊥平面A1B1C1,∠B1A1C1=90°,D、E分别为CC1和A1B1的中点,且A1A=AC=2AB=2.
(I)求证:C1E∥平面A1BD;
(Ⅱ)求点C1到平面A1BD的距离.
(本小题满分12分)
某工科院校对A,B两个专业的男女生人数进行调查,得到如下的列联表:
(I) 从B专业的女生中随机抽取2名女生参加某项活动,其中女生甲被选到的概率是多少?
(II)能否在犯错误的概率不超过0.05的前提下,认为工科院校中“性别”与“专业”有关系呢?
注:
(本小题满分12分)
某城市有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC、△ABD,经测量AD=BD=14,BC=10,AC=16,∠C=∠D.
(I)求AB的长度;
(Ⅱ)若建造环境标志的费用与用地面积成正比,不考虑其他因素,小李、小王谁的设计使建造费用最低,请说明理由.
(本小题满分10分)
已知等差数列{},
为其前n项的和,
=0,
=6,n∈N*.
(I)求数列{}的通项公式;
(II)若=3
,求数列{
}的前n项的和.
已知函数.
(I)求函数的单调区间;
(Ⅱ)函数在区间[1,2]上是否有零点,若有,求出零点,若没有,请说明理由;
(Ⅲ)若任意的∈(1,2)且
≠
,证明:
(注: