如图,四边形
为正方形,
分别为
的中点,以
为折痕把 折起,使点
到达点
的位置,且
.
(1)证明:平面 平面 ;
(2)求 与平面 所成角的正弦值.
若方程x2+y2+4mx-2y+5m =0表示①圆,②点,③不表示任何图形,分别求出满足条件的M的取值范围.
已知圆x2+y2-2(m-1)x+2(m -1)y+2 m 2-6 m+4=0过坐标原点,求实数m的值.
自A(4,0)引圆x2+y2=4的割线ABC,求弦BC中点P的轨迹方程.
已知圆C同时满足下列三个条件:①圆心在直线x-3y=0上;
②与y轴相切;③在x轴上截得的弦长AB为42.求圆C的一般方程.
下列方程能否表示圆?若能表示圆,求出圆心和半径.
(1)2x2+y2-7y+5=0;
(2)x2-xy+y2+6x+7y=0;
(3)x2+y2-2x-4y+10=0;
(4)2x2+2y2-5x=0.