游客
题文

设椭圆 C : x 2 2 + y 2 = 1 的右焦点为 F ,过 F 的直线 l C 交于 A , B 两点,点 M 的坐标为 ( 2 , 0 ) .

(1)当 l x 轴垂直时,求直线 AM 的方程;

(2)设 O 为坐标原点,证明: OMA = OMB .

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知的终边经过点,且,求的值.

(本小题共12分)如图,一张平行四边形的硬纸片中,。沿它的对角线把△折起,使点到达平面外点的位置。

(Ⅰ)证明:平面平面
(Ⅱ)如果△为等腰三角形,求二面角的大小。

(本小题共12分)已知数列的前n项和,其中是首项为1,公差为2的等差数列,
(1)求数列的通项公式;
(2)若,求数列的前n项和

(本小题共12分)直四棱柱中,底面是边长为的正方形,侧棱长为4。
(1)求证:平面平面
(2)求点到平面的距离d;
(3)求三棱锥的体积V。

(本小题共12分)如图,在四棱锥中,底面四边长为1的菱形,, , ,的中点,的中点,求异面直线OC与MN所成角的余弦值。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号