已知函数 , M为不等式 的解集.
(1)求 ;
(2)证明:当 时, 。
(本小题满分12分)已知命题:
,命题
:
(
).
若“”是“
”的必要而不充分条件,求实数
的取值范围.
如图,单位圆(半径为1的圆)的圆心O为坐标原点,单位圆与y轴的正半轴交于点A,与钝角α的终边OB交于点B(xB,yB),设∠BAO=β.
(1)用β表示α;
(2)如果 sin β=,求点B(xB,yB)坐标;
(3)求xB-yB的最小值.
如图,A,B是单位圆上的两个质点,点B坐标为(1,0),∠BOA=60°.质点A以1 rad/s的角速度按逆时针方向在单位圆上运动,质点B以1 rad/s的角速度按顺时针方向在单位圆上运动.
(1)求经过1 s 后,∠BOA的弧度;
(2)求质点A,B在单位圆上第一次相遇所用的时间.
求值:sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050°)+tan 945°.
已知sin α<0,tan α>0.
(1)求α角的集合;
(2)求终边所在的象限;
(3)试判断tansin
cos
的符号.