在平面直角坐标系 中,点P到点F 的距离的4倍与它到直线 的距离的3倍之和记为d,当P点运动时,d恒等于点P的横坐标与18之和
(Ⅰ)求点P的轨迹C;
(Ⅱ)设过点F的直线I与轨迹C相交于M,N两点,求线段MN长度的最大值。
(本小题满分14分)已知中心在坐标原点O,焦点在轴上,长轴长是短轴长的2倍的椭圆经过点M(2,1)
(Ⅰ)求椭圆的方程;
(Ⅱ)直线平行于
,且与椭圆交于A、B两个不同点.
(ⅰ)若为钝角,求直线
在
轴上的截距m的取值范围;
(ⅱ)求证直线MA、MB与x轴围成的三角形总是等腰三角形.
(本小题13分)已知.
(I)求的单调增区间;
(II)若在定义域R内单调递增,求
的取值范围;
(III)是否存在,使
在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出
的值;若不存在,说明理由.
(本小题满分12分)已知数列的前n项和
满足
(
>0,且
)。数列
满足
(I)求数列的通项。
(II)若对一切都有
,求
的取值范围。
(本小题满分12分)在直三棱柱(侧棱垂直底面)中,
,
,且异面直线
与
所成的角等于
.
(Ⅰ)求棱柱的高;
(Ⅱ)求与平面
所成的角的大小.
(本小题12分)文科班某同学参加广东省学业水平测试,物理、化学、生物获得等级A和获得等级不是A的机会相等,物理、化学、生物获得等级A的事件分别记为,物理、化学、生物获得等级不是A的事件分别记为
.
(I)试列举该同学这次水平测试中物理、化学、生物成绩是否为A的所有可能结果(如三科成绩均为A记为();
(II)求该同学参加这次水平测试获得两个A的概率;