游客
题文

为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布 N ( μ , σ 2 )

(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在 ( μ - 3 σ , μ + 3 σ ) 之外的零件数,求 P ( X 1 ) X 的数学期望;

(2)一天内抽检零件中,如果出现了尺寸在 ( μ - 3 σ , μ + 3 σ ) 之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

)试说明上述监控生产过程方法的合理性;

)下面是检验员在一天内抽取的16个零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得 x ̄ = 1 16 i = 1 16 x i = 9 . 97 s = 1 16 i = 1 16 ( x i - x ̄ ) 2 = 1 16 ( i = 1 16 x i 2 - 16 x ̄ 2 ) 2 0 . 212 ,其中 x i 为抽取的第 i 个零件的尺寸, i = 1 , 2 , , 16

用样本平均数 x ̄ 作为 μ 的估计值 μ ̂ ,用样本标准差 s 作为 σ 的估计值 σ ̂ ,利用估计值判断是否需对当天的生产过程进行检查?剔除 ( μ ̂ - 3 σ ̂ , μ ̂ + 3 σ ̂ ) 之外的数据,用剩下的数据估计 μ σ (精确到0.01).

附:若随机变量 Z 服从正态分布 N ( μ , σ 2 ) ,则 P ( μ - 3 σ < Z < μ + 3 σ ) = 0 . 997 4

0 . 997 4 16 = 0 . 959 2 0 . 008 0 . 09

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知数列的前项和,函数,数列满足.
(1)分别求数列的通项公式;
(2)若数列满足是数列的前项和,若存在正实数,使不等式对于一切的恒成立,求的取值范围.

已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.
(1)求动圆圆心的轨迹M的方程;
(2)设过点P,且斜率为-的直线与曲线M相交于A、B两点. 问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由.

某厂生产甲、乙两种产品每吨所需的煤、电和产值如下表所示.


用煤(吨)
用电(千瓦)
产值(万元)
甲产品
7
20
8
乙产品
3
50
12

但国家每天分配给该厂的煤、电有限, 每天供煤至多56吨,供电至多450千瓦,问该厂如何安排生产,使得该厂日产值大?最大日产值为多少?

已知的三内角,且其对边分别为,若
(1)求
(2)若,求的面积.

在等比数列的前n项和中,最小,且,前n项和,求n和公比q

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号