为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布 .
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在 之外的零件数,求 及 的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在 之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.95 |
10.12 |
9.96 |
9.96 |
10.01 |
9.92 |
9.98 |
10.04 |
10.26 |
9.91 |
10.13 |
10.02 |
9.22 |
10.04 |
10.05 |
9.95 |
经计算得
,
,其中
为抽取的第
个零件的尺寸,
.
用样本平均数 作为 的估计值 ,用样本标准差 作为 的估计值 ,利用估计值判断是否需对当天的生产过程进行检查?剔除 之外的数据,用剩下的数据估计 和 (精确到0.01).
附:若随机变量 服从正态分布 ,则 ,
, .
已知命题:“不等式
对任意
恒成立”,命题
:“方程
表示焦点在x轴上的椭圆”,若
为真命题,
为真,求实数
的取值范围.
已知双曲线的两条渐近线与抛物线
的准线分别交于A,B两点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为
.
(1)求抛物线的方程;
(2)过点的直线
与抛物线
交于不同的两点
,若在
轴上存在一点
使得
是等边三角形,求
的值.
在平面直角坐标系中,已知圆
:
和点
,过点
的直线
交圆
于
两点.
(1)若,求直线
的方程;
(2)设弦的中点为
,求点
的轨迹方程.
如图,四棱锥P—ABCD的底面为菱形且,PA⊥底面ABCD,AB=2
,PA=
,E为PC的中点.
(1)求直线DE与平面PAC所成角的大小;
(2)求二面角E—AD—C的余弦值.
如图,直三棱柱(侧棱垂直于底面)中,
,点
是棱
的中点,且
.
(1)求证:;
(2)求直线与平面
所成角的正弦值.