游客
题文

改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:

支付金额

支付方式

不大于 2000

大于 2000

仅使用A

27人

3人

仅使用B

24人

1人

(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;

(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于 2000 元的概率;

(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于 2000 元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于 2000 元的人数有变化?说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 随机事件 用样本估计总体 概率综合
登录免费查看答案和解析
相关试题

已知四棱锥的底面是菱形.的中点.

(1)求证:∥平面
(2)求证:平面平面

已知等差数列满足.
(Ⅰ)求
(Ⅱ)数列满足, 为数列的前项和,求.

各项均为正数的等差数列首项为1,且成等比数列,
(1)求通项公式;
(2)求数列前n项和
(3)若对任意正整数n都有成立,求范围.

已知椭圆E:)离心率为,上顶点M,右顶点N,直线MN与圆相切,斜率为k的直线l经过椭圆E在正半轴的焦点F,且交E于A、B不同两点.
(1)求E的方程;
(2)若点G(m,0)且| GA|=| GB|,,求m的取值范围.

如图,在直三棱柱(侧棱垂直底面)中,M、N分别是BC、AC1中点,AA1=2,AB=,AC=AM=1.

(1)证明:MN∥平面A1ABB1
(2)求几何体C—MNA的体积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号