改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
支付金额 支付方式 |
不大于 元 |
大于 元 |
仅使用A |
27人 |
3人 |
仅使用B |
24人 |
1人 |
(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;
(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于 元的概率;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于 元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于 元的人数有变化?说明理由.
已知集合,
.
(1)若,求实数
的取值范围;
(2)若,求实数
的取值范围.
已知命题,满足
,命题
,方程
都表示焦点在
轴上的椭圆.若命题
为真命题,
为假命题,求
实数
的取值范围
在圆上任取一点
,过点
作
轴的垂线段
,
为垂足.当点
在圆上运动时,线段
的中点
形成轨迹
.
(1)求轨迹的方程;
(2)若直线与曲线
交于
两点,
为曲线
上一动点,求
面积的最大值
如图,设点是圆
上的动点,过点
作圆
的两条切线,切点分别为
,切线
分别交
轴于
两点.
(1)求四边形面积的最小值;
(2)是否存在点,使得线段
被圆
在点
处的切线平分?若存在,求出点
的纵坐标
;若不存在,说明理由.
如图,在平行四边形中,
,
,
为线段
的中线,将△
沿
直线
翻折成△
,使平面
⊥平面
,
为线
段
的中点.
(1)求证:∥平面
;
(2)设为线段
的中点,求直线
与平面
所成角的余弦值.