游客
题文

已知函数 f ( x ) = 1 4 x 3 - x 2 + x

(Ⅰ)求曲线 y = f ( x ) 的斜率为1的切线方程;

(Ⅱ)当 x [ - 2 , 4 ] 时,求证: x - 6 f ( x ) x

(Ⅲ)设 F ( x ) = | f ( x ) - ( x + a ) | ( a R ) ,记 F ( x ) 在区间 [ - 2 , 4 ] 上的最大值为 M a ,当 M a 最小时,求 a 的值.

科目 数学   题型 解答题   难度 较难
知识点: 导数的概念及其意义 导数在研究函数中的应用
登录免费查看答案和解析
相关试题

求下面数列的前n项和:
1,3,5,7,…

已知数列{an}的首项a1=2a+1(a是常数,且a≠-1),
an=2an-1+n2-4n+2(n≥2),数列{bn}的首项b1=a,
bn=an+n2(n≥2).
(1)证明:{bn}从第2项起是以2为公比的等比数列;
(2)设Sn为数列{bn}的前n项和,且{Sn}是等比数列,求实数a的值;
(3)当a>0时,求数列{an}的最小项.

已知数列{an}的前n项和为Sn,a1=1,Sn+1=4an+1,设bn=an+1-2an.证明:数列{bn}是等比数列.

等比数列{an}的前n项和为Sn,已知a1+an=66,a2an-1=128,Sn=126,求n和公比q的值.

已知数列{an}的前n项和Sn=2n2+2n,数列{bn}的前n项和Tn=2-bn.
(1)求数列{an}与{bn}的通项公式;
(2)设cn·bn,证明:当且仅当n≥3时,cn+1<cn..

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号